
R vs. Excel: A Simple Comparison

Bas Machielsen

February 13, 2020

Abstract
Microsoft Excel is often used by students and teachers alike to perform elementary data treatment,
and generate descriptive statistics and accompanying graphs. Contrary to popular wisdom, however,
Excel is not user-friendly, and the quality of its output is, by most standards, judged as inferior to the
outputs of various alternatives. In this pamphlet, I contrast Excel with R. I proceed by showing the most
common way of doing five elementary data operations in Excel, and then perform each of them in R:
Data tidying, by subset statistics, data merging, creating elementary graphs, and string manipulation.
By comparing and contrasting both approaches, I intend to show the approach using R is superior, and
Microsoft Excel can be left aside in the future.

1 Data Tidying

Data tidying is one of the most important skills for
anyone intending to work with, and analyze, data.
Data tidying involves the process of going from ’un-
tidy’ data, which can be in many formats, to tidy
data, which can only be in one format: tidy data
is data in which separate observations are stored in
rows, and separate variables are stored in columns
(Wickham et al. (2014)). As an example of un-
tidy data, let us take an example from R for Data
Science (Wickham and Grolemund, 2016):

country year type count
Afghanistan 1999 cases 745
Afghanistan 1999 population 19987071
Afghanistan 2000 cases 2666
Afghanistan 2000 population 20595360
Brazil 1999 cases 37737
Brazil 1999 population 172006362
Brazil 2000 cases 80488
Brazil 2000 population 174504898
China 1999 cases 212258
China 1999 population 1272915272
China 2000 cases 213766
China 2000 population 1280428583

This dataset contains three countries,
Afghanistan, China, and Brazil, their estimated

population, and the number of cases (presumably,
of a disease). This dataset is untidy because al-
though every observation is in a separate row, not
every variable is stored in a separate column. Both
cases and population are stored in one variable.
How would we go about this problem in Microsoft
Excel? There are two alternatives. We could do it
by hand, which is possible in case of tiny datasets
like these, but what if the sample would contain
many more countries? Secondly, we could use Ex-
cel’s pivot function, which would encompass the
following steps: we start out with the dataset in
Excel, as depicted in figure 1.

1



Then, we should select the entire table, go to
Insert, and select PivotChart, then PivotChart and
PivotTable, as depicted in figure 1.

Then, we get the menu depicted in figure 3, in
which we should select the intricate combination of
existing variables leading to a recomposition of the
table cells that at best requires loads of copy-and-
pasting before you have a clean and tidy dataset.

Now, let’s contrast this approach to an ap-
proach in R. We start up Rstudio, load the tidyverse
(a set of packages which facilitate data tidying and
other data treatment), and execute the following
commands (the data as previously shown is loaded
as table2):

library(tidyverse)

pivot_wider(table2,

names_from = "type",

values_from = "count"

)

We immediately obtain the following table,
which is a tidy dataset. Each observation is stored

in a row, and each variable (each separate piece of
information) is stored in a column.

country year cases population
Afghanistan 1999 745 19987071
Afghanistan 2000 2666 20595360
Brazil 1999 37737 172006362
Brazil 2000 80488 174504898
China 1999 212258 1272915272
China 2000 213766 1280428583

So far for tidying data. It seems clear that R is
much more user-friendly, and also much faster. Let
us now proceed with the second aspect, by subset-
ting.

2 By subsetting

By subsetting refers to the process of summing,
averaging, or computing any other statistic of a
variable X per group/category of a variable Y. As
an example, let us look at the following dataset:

year qtr return
2015 1.00 1.88
2015 2.00 0.59
2015 3.00 0.35
2015 4.00 NA
2016 2.00 0.92
2016 3.00 0.17
2016 4.00 2.66

The dataset contains stock returns on a certain
portfolio per quarter. If one looks at the data at-
tentively, it is noticeable that there is one explicit
NA, but there is also an implicit NA. I have added
this for fun, to see how both R and Excel handle
this. Suppose we want to know the average return
per quarter. How do we go about this in Excel?
First, we start off with the dataset in Excel. We
have to make sure that Excel recognizes the data
as numbers, which is always a tedious undertak-
ing. In this case, we must find all dots and replace
them by comma’s to have Excel recognize them as
numbers. This starting position is shown in the
following figure:

2



Then, we once again apply pivot table, and we
end up with the following menu, in which we want
to categorize the quarters and summarise the re-
turns:

So now we have the quarters where they be-
long, but Excel gives us the sum of both metrics
by default, and not the average! Fortunately, we
can still do this, by right-clicking in the table on
one of the sum of the returns (see figure 2), we
select Summarize Values By, and then select Aver-
age. Finally, we have obtained one simple group by
statistic using Excel.

Let us now do the same job in R. We again use
the tidyverse, the aforementioned set of packages.
More specifically, we use dplyr, which is specifically
designed to ’ply’ the data into the most commonly
used forms, including subsetting. As we’ve loaded
the packages before, there is no need to do it again.
We can start right-off by instructing R to ply the
data according to a group using the group by com-
mand, and then instructing R to take the average:

stocks %>%

group_by(qtr) %>%

summarise(average =

mean(return,

na.rm = TRUE)

)

In this chunk, I make use of R’s ’piping’ oper-
ator (%>%), which basically tells you to use the
results of the previously entered commands to the
next one. In particular, I tell R to take the stocks
dataset, then group it by quarter (using dplyr’s
group_by), and then summarise over the previ-
ous output (i.e. the dataset grouped by quarter).
Summarise is very general, so in this example I
took the mean, but I can take the median, standard
deviation, maximum, minimum, or any combina-
tion of them, according to my liking. R also allows
for more customization by specifying to remove
NA’s, instead of automatically removing them and
offering no option, as Excel does. This is the out-
put that I obtain:

3



qtr average
1.00 1.88
2.00 0.76
3.00 0.26
4.00 2.66

group_by also enables the user to group the
data according to multiple categorical variables, so
you could compute means, medians, etc. for every
group1-group2 combination. Finally, by specify-
ing average in the previous chunk, I specified the
name I wanted to give to my variable, something
which is also difficult to do in Excel.

3 Merging data

The next part involves data merging. Merging
data involves combining observations for the same
units (for example, country-year units) on differ-
ent variables in one new data frame. For example,
I might have a time-series of government spend-
ing over GDP in the Netherlands and Germany
from 1870-1940, and I might have another time
series of educational spending in those two coun-
tries. I want to connect each country-year observa-
tion from the first dataset to the second, so I end
up with a dataset with both variables. Now, let’s
take two datasets from Clio-Infra, a website fea-
turing datasets frequently used in (cross-country)
economic history analyses. To break with tradition,
I will first show how to do this in R, which turns
out to be extremely easy.

First, I load two datasets from Clio-infra, aver-
age years of education (educ), and GDP per capita
(gdp). The datasets look as follows:

head(educ, 5)

ccode country.name year value
528.00 Netherlands 1820.00 2.00
826.00 United Kingdom 1820.00 1.76
528.00 Netherlands 1830.00 2.00
826.00 United Kingdom 1830.00 1.93
528.00 Netherlands 1840.00 2.50

head(gdp, 5)

ccode country.name year value
56.00 Belgium 1500.00 1467.00

818.00 Egypt 1500.00 680.00
276.00 Germany 1500.00 1146.00
380.00 Italy 1500.00 1532.85
528.00 Netherlands 1500.00 1454.00

Very nice! Both datasets are tidy: countries,
years, and values of gdp and educ respectively are
stored separately. Now, let’s see how easy it is to
merge these two datasets.

merge(gdp, educ,

by.x = c("country.name",

"year",

"ccode"),

by.y = c("country.name",

"year",

"ccode")

)

That’s right! We use the command merge, we
specify the variables which we need to match for
both the first dataset (by.x) and the second dataset
(by.y), and R automatically matches all observa-
tions. The output (I called it merge) looks as fol-
lows:

head(merge, 5)

country.name year ccode value.x value.y
Afghanistan 1950.00 4.00 645.00 0.22
Afghanistan 1960.00 4.00 739.00 0.31
Afghanistan 1970.00 4.00 709.00 0.62
Afghanistan 1980.00 4.00 690.00 1.09
Afghanistan 1990.00 4.00 604.00 1.60

Now, let’s see how to do this in Excel. This
will be much more difficult, as Excel has no built-
in merge function. Excel only has VLOOKUP, which
can be very useful, but is challenging to use if you
want to match according to multiple variables. Of-
tentimes, the user is forced to generate a ’key’ (a
country-year variable in this example) to be able
to match observations. This is unnecessary and
user-unfriendly, in contrast to the straightforward
approach just enunciated in R.

First, in Excel, it is useful to have both datasets
in one Excel session, so we have to copy and paste
one dataset into a separate sheet in the other file.
In figure 7, we can see that I’ve pasted one dataset

4

www.clio-infra.eu


(’GDP’) in the file of the other, but on a sepa-
rate sheet. Then, we have to start making a con-
catenated variable in both dataset of country-year,
so as to allow VLOOKUP match the variables later.
VLOOKUP can only match on the basis of one vari-
able, unlike R’s merge function, so we have to con-
catenate all relevant variables for merging into one
variable.

We insert a new column, and use the
CONCATENATE function to concatenate the string
of cell B2 with that of D2, with this command:
=CONCATENATE(B2;D2). We then click on the
small dot below to expand the command to all ob-
servations in GDP. Then, we repeat this procedure
in EDUC. We end up with the following extra col-
umn in both datasets.

Then, we take either one of the datasets as
our ’base’ dataset (I use EDUC), create a new col-
umn (and call it GDP, for example), and then apply
VLOOKUP in the following way:

=VLOOKUP(C2;GDP!C:E;3;FALSE)

where C2 refers to our ’key’ column, a country-
year observation. We can then extend this by click-
ing on the right dot at the lower right of the first
cell. The syntax in VLOOKUP is confusing and user-
unfriendly: first, you have to specify the variable
on the basis of which you want to match (in this
case the newly-created key, e.g. Netherlands1880),
then, you specify the array over which you want
to match. This array must have the key as the
first variable, otherwise it will not work. Then, you
specify the relative column from which you want
to retrieve the matched value (which, in our case,
is the 3rd column relative to the key column), and
you specify approximate matching as FALSE, be-
cause approximate matching in Excel works very
badly. Only in this way you can match variables on
a one-by-one basis in Excel. This is about as stupid
as it gets. Finally, you will end up with the follow-
ing dataset, after having done a lot more work than
you would have done if you would’ve used R:

5



Next, we will talk about one of the most fun
aspects of data treatment: creating elementary
graphs.

4 Graphs

Admittedly, it is quite easy to make graphs in Ex-
cel. However, Excel-generated graphs are notori-
ously ugly. In this section, I attempt to show that
graphs using the ggplot system in R are as easy, if
not easier, to create as those in Excel, and I will
demonstrate that they are much prettier, and give
more oversight, even when using the same under-
lying data. Let us use the newly-created dataset
in the previous section, to attempt to construct a
decent graph in Excel.

We start off by constructing a graph depicting
the relationship between education and GDP. Do
we find that better educated countries (or techni-
cally, country-years) have a higher GPD than lower
educated countries?

The answer is.. yes! But the graph is quite
ugly.

Let us now see how to do this in R. Could it
be any easier than this? Probably not, but it is
not much harder, and the graphs are prettier, and
it is easier to customize them in a way which is
suitable for presentations or journal articles, as I
demonstrate below.

Remember that we had previously loaded
merge into our R environment, so we can just call
it using the basic qplot function from the ggplot2
package, which generates a default plot of the vari-
ables you specify.

qplot(data = merge,

value.y,

value.x)

You specify the dataset you use, the x variable,
and the y variable (in this case, value.y is educa-
tion and value.x is gdp), and qplot automatically
generates a plot for you. The plot is shown below:

There are many more options through which
you can customize your graphs in the ggplot2 pack-
age. As a demonstration, I attempt to use some
different aesthetics to showcase the features of gg-
plot. I filter the dataset to only include observa-
tions from 1950, 1970, 1980 and 2000 to explore
differences in relationship between education and
GDP over time:

6



For the code, see the appendix.

5 String manipulation

In the final section, I want to briefly discuss string
manipulation. String manipulation can be very
easy in Excel, by using the LEFT and RIGHT com-
mands to extract the left and right parts of a string.
This is useful, for example, in the case of extract-
ing a year from a long string. It is conceivable,
however, that there are more tedious cases, and
Excel offers no universal solution for them. In R,
there is an integrated language called Regular Ex-
pressions, which is also supported in Python, Perl,
and many other programming languages. Regu-
lar Expressions allow you to specify a particular
pattern which you are looking for, so it comes in
as extremely handly when extracting strings. Sup-
pose we want to extract the year from the following
string:

TOTAL_2018_""NL_ASSETS

In Excel, supposing the string were located in
cell A1, we could do the following:

=MID(A1;7;4)

However, once we are unsure of the starting
place and the length of the year (it could be a
date), we would run into trouble. Alternatively, we
could use R to match the same string. This could
be done in the following way:

str_extract(str, "([0-9])+")

In which we specify we want to extract any se-
quence (indicated by ()+) of numbers (indicated by
[0-9]). Therefore, string matching is easier, more
intuitive and more straightforward in R.

6 Conclusion

In this pamphlet, I compared five common data
manipulation operations in Excel and R. I conclude
that R is easier to use for these manipulations, and
in the case it isn’t, it is about as easy, but yields
much better results. Thank you for reading.

A Code for Figure Education
and GDP

The code which I used to generate the graph in
section 4 is the following:

ggplot(data = merge2, aes(

x = value.y, y = value.x)) +

geom_point() +

facet_wrap(~ year, nrow = 2) +

geom_text(

data = subset(merge2,

year == "2000"

& value.x > 25000),

aes(value.y, value.x,

label = country.name),

hjust = "right") +

scale_x_continuous(breaks = NULL) +

ggtitle("Education and GDP over the years") +

theme_ipsum_rc()

References

Wickham, H. et al. (2014). Tidy data. Journal of
Statistical Software, 59(10):1–23.

Wickham, H. and Grolemund, G. (2016). R for
data science: import, tidy, transform, visualize,
and model data. ” O’Reilly Media, Inc.”.

7


	Data Tidying
	By subsetting
	Merging data
	Graphs
	String manipulation
	Conclusion
	Code for Figure Education and GDP

