
Historical Persistence
Applied Economics Research Course

Bas Machielsen
Utrecht University
2023-11-13

Introduction

2 / 42

Introduction
In the previous class, I have shown you an example of vector-format spatial data

This means that spatial data is represented in a data.frame -like format with objects
like polygons or lines

Polygons: Municipality boundaries
Lines: Borders of the Roman Empire

Another way to represent spatial data is raster data

Raster data can be seen much like an image, consisting of a matrix of "pixels"

But these pixels have specific geographic coordinates indicating their place on the
world globe

3 / 42

Outline
In this lecture, I demonstrate:

Part 1: Manipulate and join vector data

Part 2: Manipulate raster data

Part 3: How to use vector data when you have rastered data as basic unit of
analysis

Part 4: How to use raster data when you have vector data as basic unit of analysis

4 / 42

Why Different Formats?
In a research project, you must pick your unit of analysis

A unit of analysis in a research project with a spatial dimension can be either a
geographical unit such as a municipality, a region or a country

This naturally fits well with vector data, containing polygons

However, your unit of analysis may also be a 1x1 latitude x longitude area

Raster data is much more suitable for this

5 / 42

Preliminaries
Both raster and vector data have various things in common

Both are geocoded and use a particular CRS (Coordinate Reference System)

Can have multiple variables (vector data) and layers (raster data)

You can generally convert data from vector to raster

Converting from raster to vector is more difficult

Usually what we do is use either raster data as a basis, or aggregate raster data to
an already existing vector basis
Example: aggregate nightlights data (raster data) to the country level
See this paper

6 / 42

https://thedocs.worldbank.org/en/doc/350051528721174623-0050022018/original/Nightlights.pdf

Part 1: Computing on Vector Data

7 / 42

Getting The CRS
You have already seen you can do various things on vector data

For example, you can ask what CRS it is in:

netherlands <- geodata::gadm("Netherlands", level=1, path="./") |> st_as_sf()
st_crs(netherlands)[1]

$input
[1] "WGS 84"

(You can also change that with st_transform)

R-Spatial has a very good introduction to manipulating spatial data. In particular, it
details how to:

Aggregate feature sets
Summarize feature sets
Join two feature sets based on feature geometry

8 / 42

https://r-spatial.github.io/sf/articles/sf4.html

Spatial Data Operations
sf allows you to overlay spatial objects to find their intersections, unions, or
differences.

Common operations include:

Intersection: Finding common areas between two spatial objects.
(st_intersection)
Union: Combining the geometries of two or more objects. (st_union)
Difference: Identifying the areas where one object differs from another.
(st_difference)

You can also use buffering: buffering involves creating a buffer (a zone or area) around
a spatial object.

Useful for proximity analysis and determining distances to specific features.

utrecht <- netherlands |> filter(NAME_1 == "Utrecht")
buffer_around_utrecht <- st_buffer(utrecht,
 dist = 1000)

9 / 42

Clipping and Cropping
Clipping is the process of extracting a subset of spatial data within a defined boundary.

clipped_data <- st_intersection(netherlands, utrecht)

Cropping is similar but keeps only the part of the data within a specific polygon.

cropped_data <- st_crop(netherlands, utrecht)

library(gridExtra)
p1 <- ggplot(clipped_data) + geom_sf(); p2 <- ggplot(cropped_data) + geom_sf()
grid.arrange(p1, p2, ncol=2)

10 / 42

Spatial Joins
sf supports spatial joins to combine attribute data based on the spatial relationship.

Types of spatial joins include:

Inner Join: Keep only matching records from both datasets.

inner_join_result <- st_join(data1, data2)

Left Join: Include all records from the left dataset and matching records from the right.

left_join_result <- st_join(data1, data2, left = TRUE)

Right Join: Include all records from the right dataset and matching records from the
left.

right_join_result <- st_join(data1, data2, right = TRUE)

Full Join: Include all records from both datasets.

full_join_result <- st_join(data1, data2, join = st_nearest_feature)
11 / 42

Spatially Merging Two Vector Data Sets
I will now demonstrate a very common approach to merging two vector data sets:

Suppose you have one province-level dataset and one municipality-level dataset

You want to merge them together, so that you retain the lowest level (municipality)

But you want your data to also contain provinces, so you can go back and forth

Download the two maps using the geodata package

Convert them to sf format using st_as_sf

municipalities <- geodata::gadm('Netherlands', level=2, path='./') |>
 st_as_sf() |>
 dplyr::select(NAME_2, geometry)

provinces <- geodata::gadm('Netherlands', level=1, path='./') |>
 st_as_sf() |>
 dplyr::select(NAME_1, geometry)

12 / 42

Inspecting The Data
The datasets look as follows (I only show municipality):

municipalities |> head(5)

Simple feature collection with 5 features and 1 field
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 6.223702 ymin: 52.61322 xmax: 7.041859 ymax: 53.09421
Geodetic CRS: WGS 84
NAME_2 geometry
1 Aa en Hunze POLYGON ((6.569905 52.94651...
2 Assen POLYGON ((6.640786 53.02571...
3 Borger-Odoorn POLYGON ((6.745668 52.87925...
4 Coevorden POLYGON ((6.871562 52.65302...
5 De Wolden POLYGON ((6.273223 52.66813...

13 / 42

Spatial Joins
Just like ordinary join 's, such as left_join , full_join , etc., you can also spatially
join several datasets

This is done using the st_join command:

You can specify various types of join
This time, we use st_covered_by : a municipality (the first object) should be
'covered by' a province (the second object)

merged_data <- st_join(municipalities, provinces, join=st_covered_by)

14 / 42

Spatial Join Plot
We can see that we have recovered our provinces (almost) perfectly

merged_data |>
 ggplot(aes(fill=NAME_1)) + geom_sf()

15 / 42

Spatial Join Plot
..The inaccuracy is easy to solve:

merged_data <- merged_data |>
 mutate(NAME_1 = if_else(
 is.na(NAME_1), "Zuid-Holland", NAME_1)
)

The source of the inaccuracy was the missing name for Zuid-Holland in the provinces
spatial data.frame

16 / 42

Join Spatial Data
You have already seen you can use mutate on a spatial data.frame, just as you would
on a normal data.frame

In fact, you can use this spatial data.frame as you would use any other data.frame

For example, you can merge it with other data sets in exactly the way you're used to

Use the cbsodataR package:

library(cbsodataR)
population <- cbsodataR::cbs_get_data('85385NED') |>
 dplyr::select(Naam_2, Inwonertal_54) |>
 mutate(Naam_2 = str_trim(Naam_2))

data_with_pop <- left_join(merged_data,
 population,
 by=c("NAME_2" = "Naam_2"))

17 / 42

Plot Resulting Map
Now, we can plot the resulting map

Some provinces have been omitted because of faulty matches
Generally, you need identifiers to match two data.frames without errors

data_with_pop |>
 ggplot(aes(fill=log(Inwonertal_54))) +
 geom_sf() +
 scale_fill_viridis_b()

18 / 42

Part 2: Computing on Raster Data

19 / 42

Computing On Raster Data
Raster data is a type of spatial data that represents information as a grid of cells.
Each cell contains a value, often representing a measurement or attribute.

Commonly used in fields such as economics, environmental science, and data science.

Characteristics of raster data:

Regular grid structure: Data is organized in rows and columns.
Continuous or discrete values: Can represent continuous phenomena like
temperature or discrete features like land use.
Spatial resolution: Grid cell size determines the level of detail in the data.

20 / 42

Examples of Raster Data
Satellite imagery: Grid cells contain the RGB-values (plus other bands) of satellite
images
Climate data: Grid cells contain temperature, precipitation, and other climate variables.

Land use data: Categorizes land parcels into different classes (e.g., urban, agriculture).

Although more constrained than vector data, there are various things you can do with
raster data:

Raster algebra
High-level functions
Summarizing functions

21 / 42

Raster Algebra
The basic library you need for importing and changing raster data is called raster

You can just change the entries of a raster object in the same way as you would
change anything else:

You can use operations like +, -, *, / , logical operators such as >, >=, <, ==, !
and functions like abs, round, ceiling, floor, trunc, sqrt, log, exp, cos, sin,
atan, tan, max, min, range, prod, sum, any, all . In these functions you can mix
raster objects with numbers, as long as the first argument is a raster object.

22 / 42

Raster Algebra Example
Example:
I download potato land suitability over the entire world

Then I edit all the raster values by taking the square root

library(raster)
potato <- geodata::crop_monfreda(crop="potato", path="./")

sqrt_potato <- sqrt(potato)
raster::plot(sqrt_potato)

23 / 42

High-level Functions
aggregate and disagg allow for changing the resolution (cell size) of a SpatRaster
object.

In the case of aggregate , you need to specify a function determining what to do
with the grouped cell values mean. It is possible to specify different
(dis)aggregation factors in the x and y direction.

crop lets you take a geographic subset of a larger raster object. You can crop a raster
object by providing an extent object or another spatial object from which an extent can
be extracted

An easy way to get an extent object is to plot a raster and then use drawExtent to
visually determine the bounding box

trim crops a raster by removing the outer rows and columns that only contain NA
values.

In contrast, extend adds new rows and/or columns with NA values. The purpose of
this could be to create a new raster with the same Extent of another, larger, raster
so that they can be used together in other functions.

24 / 42

High-level Functions Example
Example: I take the sqrt_potato raster data.frame and crop it to match the size of the
Netherlands

crop(sqrt_potato, netherlands) |> terra::plot()

25 / 42

Part 3: Aggregate Raster to Vector

26 / 42

Raster Data
We will use the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data
source to acquire a raster data of the Netherlands

MODIS is an instrument aboard the Terra and Aqua satellites, which orbits the entire
Earth every 1-2 days, acquiring data at different spatial resolutions.

The data acquired by MODIS describes features of the land, oceans and the
atmosphere.

A complete list of MODIS data products can be found on the MODIS website
The website contains codes that you use to query the corresponding data
I use the vegetation index products, available here

27 / 42

https://modis.gsfc.nasa.gov/data/dataprod/
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php

Get Vegetation Data
We start off by gathering the Normalized Difference Vegetation Index (NDVI) data for
the Netherlands

It is a widely used vegetation index in remote sensing and geospatial analysis to
assess and monitor the health and vitality of vegetation
Values close to -1 represent non-vegetated or barren surfaces, such as water
bodies or urban areas, values close to 0 correspond to to bare soil, rocks, or other
non-vegetated surface, and values closer to 1 represent various stages of
vegetation, with higher values indicating healthier and denser vegetation.

library(MODIStsp)
information <- MODIStsp_get_prodlayers("M*D13Q1")

information[3]

$bandfullnames
[1] "16 day NDVI average" "16 day EVI average" "VI q
[4] "Surface Reflectance Band 1" "Surface Reflectance Band 2" "Surf
[7] "Surface Reflectance Band 7" "View zenith angle of VI pixel" "Sun
[10] "Relative azimuth angle of VI pixel" "Day of year of VI pixel" "Qual

28 / 42

Downloading Data
Now, we send a long query to the MODIS database:

source('password.R')
MODIStsp(
 gui = FALSE,
 out_folder = "./",
 out_folder_mod = "./",
 selprod = "Vegetation_Indexes_16Days_1Km (M*D13A2)",
 bandsel = "NDVI",
 user = "basm92",
 password = password_here,
 start_date = "2020.06.01",
 end_date = "2020.06.01",
 verbose = FALSE,
 spatmeth = "file",
 spafile = "gadm/netherlands.shp",
 out_format = "GTiff"
)

29 / 42

Import Data to R
..And we import the data in R:

library(raster); library(terra)
Import the file
ndvi_raster <- raster('./MYD13A2.A2020153.h18v03.061.2020336102901.hdf')
Set the CRS of the Netherlands to this file
crs_raster <- st_crs(ndvi_raster)
netherlands_transformed <- st_transform(netherlands, crs= crs_raster)
Isolate only the relevant part overlapping the netherlands
ndvi_raster <- raster::mask(ndvi_raster, netherlands_transformed)
Crop it
ndvi_raster <- terra::crop(ndvi_raster, netherlands_transformed)

30 / 42

Plot Output
Our file looks like this:

raster::plot(ndvi_raster)

31 / 42

Main Task
Now we can proceed to our main task: computing average vegetation per polygon in
our netherlands shapefile

Or rather, let's do this by municipality!

Import
netherlands_munip <- geodata::gadm("Netherlands", level=2, path="./") |> st_as_sf(

Set the CRS
netherlands_munip <- st_transform(netherlands_munip, crs = crs_raster)

This can be done very easily through raster 's extract function:
This extracts a list of values from the raster for each polygon in the sf data frame:
Followed by some data wrangling:

values <- extract(ndvi_raster, netherlands_munip)
netherlands_munip <- netherlands_munip |>
 mutate(mean_ndvi = map_dbl(values, mean, na.rm=T))

32 / 42

Inspect Output
Finally, we can plot this:

Some of the highly urbanized areas have a low vegetation index and some of the
more rural areas have a higher vegetation index

netherlands_munip |>
 ggplot(aes(fill=mean_ndvi)) +
 geom_sf() +
 scale_fill_viridis_c(direction = -1, option = 'turbo')

33 / 42

Part 4: Aggregate Vector to Raster

34 / 42

Download Map to Start With
We first download the map of the Netherlands through the giscoR package

netherlands <- giscoR::gisco_get_lau(year='2020', country='Netherlands')

netherlands |> head(5)

Simple feature collection with 5 features and 10 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 3.433871 ymin: 51.20128 xmax: 5.021941 ymax: 52.3025
Geodetic CRS: WGS 84
id GISCO_ID CNTR_CODE LAU_ID LAU_NAME POP_2020 POP_DENS_2020
1 NL_GM0715 NL_GM0715 NL GM0715 Terneuzen 54438 208.5815
2 NL_GM0716 NL_GM0716 NL GM0716 Tholen 25758 157.1897
3 NL_GM0717 NL_GM0717 NL GM0717 Veere 21885 154.9336
4 NL_GM0718 NL_GM0718 NL GM0718 Vlissingen 44365 1259.4066
5 NL_GM0736 NL_GM0736 NL GM0736 De Ronde Venen 44457 380.1674
AREA_KM2 YEAR FID _ogr_geometry_
1 260.99149 2020 NL_GM0715 MULTIPOLYGON (((3.99667 51....
2 163.86569 2020 NL_GM0716 MULTIPOLYGON (((4.15222 51....
3 141.25409 2020 NL_GM0717 MULTIPOLYGON (((3.708876 51...
4 35.22691 2020 NL_GM0718 MULTIPOLYGON (((3.716321 51...
5 116.94059 2020 NL_GM0736 MULTIPOLYGON (((4.909582 52... 35 / 42

Plot The Map
Let us have a look at POP_DENS_2020 , the population density in 2020

This is but one of the variables in this spatial data.frame

netherlands |>
 ggplot(aes(fill=log(POP_DENS_2020))) +
 geom_sf()

36 / 42

Make Raster of The Map
Next, we make a grid dividing the Netherlands into areas of latitude x longitude

Say in this case

The grid literally consists of pieces of area of 0.05 latitude by 0.05 longitude

This can be the unit of our analysis

library(sf); library(stars); library(starsExtra)

grid <- st_make_grid(netherlands, square=T, cellsize=c(0.05, 0.05))

x × y

0.05 × 0.05

37 / 42

Aggregate Original Vector Data to Raster
Let us now use raster::aggregate to aggregate the variables of netherlands to the
grid-level

We can choose an aggregation function: this time, we use the mean

That is, for each box in the grid, we compute the corresponding mean values of the
polygons and compute a geographical "weighted average" of our population
density and other variables

per_grid <- raster::aggregate(netherlands, grid, FUN=mean)

38 / 42

Look at Plot
Let us look at the output:

per_grid |>
 st_as_sf() |>
 ggplot(aes(fill=POP_DENS_2020)) + geom_sf() + scale_fill_viridis_c()

39 / 42

Extra: geodata

40 / 42

The geodata package
The geodata package is a package through which you can get all kinds of open-
sourced georeferenced data

Install it and load it through pacman :

p_load(geodata)

For example, geographical data can be downloaded through:

nl <- geodata::gadm("Netherlands", level = 1, path = "./") |> st_as_sf()

41 / 42

The geodata package
You can also download other kinds of (raster and vector) data:

This can again be aggregate to our raster or vector data!

temperature <- geodata::worldclim_country("Netherlands",var = "tavg", path = "./")
temperature$NLD_wc2.1_30s_tavg_1 |> raster::plot()

42 / 42

