
Introduction to Applied Data Science
Lecture 1: Introduction to Data Science

Bas Machielsen
Utrecht University
2024-04-22

Introduction

2 / 44

Introduction
Introduction to Applied Data Science

The goal of this course is to give you a rapid overview of the main tools of data
science:
A basic understanding of programming using the R language
Acquiring, importing and tidying data
Analyzing and working with a few modern data formats
Reporting and presenting your findings efficiently

Overview of this class:

This lecture: Introduction to Data Science
Introduction to R & Programming
Getting Data: API’s and Databases
Getting Data: Web Scraping
Transforming and Cleaning Data
Spatial & Network Data
Text as Data and Mining
Data Science Project (Tentative) - Vote at end of lecture

3 / 44

Course Content
Introduction to R, in arguably the most user-friendly way of programming:

You will learn to read and understand code
And communicate effectively with computers using code rather than a User
Interface

Integrating data collection and data cleaning

How do you get data to test hypotheses?

Introduction to non-standard, more modern data formats

Writing reports and presentations of your analyses using RMarkdown

An alternative to Microsoft Word and Google Docs

4 / 44

Learning Goals
On effective completion of the course, students should:

Understand the basics of R programming in a data science context
Be able to independently acquire data from a variety of sources
Understand and be able to analyze non-standard formats of data such as text
and spatial data
Be able to integrate code in reporting, thereby writing reproducible code and
analysis

5 / 44

Who am I?
Bas Machielsen

Assistant Professor Applied Economics

Research: Economic History, Political Economy

Background in Economics, Econometrics, Data Science, Coding experience in R and
Python

Contact

Email: a.h.machielsen@uu.nl
Office hours: Tuesday, after the lecture from 12:00-13:00 in ASH 1.12b

6 / 44

Course Structure
The format of the course is simple: we'll have 8 Lectures and 8 Tutorials

In 7 of the tutorials, we'll focus on an in-depth explanation of the content of the
lecture

The 8th tutorial will be dedicated to the final exam and will feature a mock exam

The course will have a mid-term exam and a final exam

The mid-term exam counts for 40% of the grade, the final exam for the remaining 60%

These exams will be conducted in-person using your own device

The exams will not be paper exams, but exams in which you have to answer
questions, sometimes verbally, sometimes in code in a so-called Rmarkdown
document
You will hand in (submit) the exam on Blackboard
Make sure to charge your laptop beforehand

7 / 44

Why do we need data?

8 / 44

Why do we need data?
Very fundamentally, why do we need data?

Roughly, three purposes:

To measure a quantity of interest, such as a country's Gross Domestic Product (GDP)
To predict a quantity of interest, such as stock prices
To explain a quantity of interest, such as the effect of education on earnings

Measuring and prediction can also lead to the formation of theory, which can then be
tested empirically

In economics, we are fundamentally interested in explaining things, rather than
prediction or measurement

However, there are also plenty of applications for these purposes

9 / 44

Why Data Science?
Contemporary economics does a lot of empirical work (meaning, testing theories)

The data used in economics research comes from a wide variety of sources

The analyses are getting more and more diverse

Hence, more and more advanced coding skills and creativity in acquiring data are
required.

Here data science comes into play

Our model of the tools needed in a typical data science project looks something like
this:

10 / 44

Why Data Science?
Figuring out whether you want to measure, predict or explain something should
always precede your analysis (model in the figure)

And should often also precede data collection

In all of these cases, however, you need to run through these steps

Tidy and transform the data to make it suitable for analysis

Recode, rearrange or regroup data to create variables in columns and observations
in rows

11 / 44

Tidy Data
There are three interrelated rules which make a dataset tidy:

Each variable must have its own column.
Each observation must have its own row.
Each value must have its own cell.

palmerpenguins::penguins |> head(8)

A tibble: 8 × 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
<fct> <fct> <dbl> <dbl> <int> <int> <fct>
1 Adelie Torgersen 39.1 18.7 181 3750 male
2 Adelie Torgersen 39.5 17.4 186 3800 femal
3 Adelie Torgersen 40.3 18 195 3250 femal
4 Adelie Torgersen NA NA NA NA <NA>
5 Adelie Torgersen 36.7 19.3 193 3450 femal
6 Adelie Torgersen 39.3 20.6 190 3650 male
7 Adelie Torgersen 38.9 17.8 181 3625 femal
8 Adelie Torgersen 39.2 19.6 195 4675 male

12 / 44

Untidy Data
An example of untidy data:

untidy_data |> head(10)

A tibble: 10 × 5
species island id var value
<chr> <chr> <int> <chr> <chr>
1 Adelie Torgersen 1 bill_length_mm 39.1
2 Adelie Torgersen 1 bill_depth_mm 18.7
3 Adelie Torgersen 1 flipper_length_mm 181
4 Adelie Torgersen 1 body_mass_g 3750
5 Adelie Torgersen 1 sex male
6 Adelie Torgersen 1 year 2007
7 Adelie Torgersen 2 bill_length_mm 39.5
8 Adelie Torgersen 2 bill_depth_mm 17.4
9 Adelie Torgersen 2 flipper_length_mm 186
10 Adelie Torgersen 2 body_mass_g 3800

13 / 44

Transforming Data
Once you have tidy data, a common first step is to transform it.

Transformation includes:

Narrowing in on observations of interest (like all people in one city, or all data
from the last year)
Creating new variables that are functions of existing variables (like computing
speed from distance and time)
Calculating a set of summary statistics (like counts or means).

Together, tidying and transforming are called data wrangling

One of the most underrated aspects of data science and one of the most useful skills
you might learn

14 / 44

Data Analysis
Once data is cleaned and organized, you usually want to analyze it.

Data analysis is done with one of the three purposes mentioned earlier in mind:
measurement, prediction or explanation.

It is important that we analyze the data using appropriate models.

These models might come from econometrics, inspired by economic theory or from
machine learning
You have already learned a foundational model: the linear regression model in
statistics:

If our purpose is explanation, we are usually interested in the coefficient
If our purpose is prediction, we are interested in the accuracy of the model

Yi = α+ βXi + ϵi

β

15 / 44

Communication
The last step of data science is communication, an absolutely critical part of any data
analysis project.
It doesn’t matter how well your models and visualization have led you to understand
the data unless you can also interpret and communicate your results to others
Communication encompasses creating nice graphs and tables
But also to interpret models in good, no-nonsense language

16 / 44

Programming and R

17 / 44

Why R?
R is in the process of becoming the most important data science language

Also in economics, where it is (likely) replacing Stata (a paid alternative)

I think this is partially due to its ease to learn and user friendliness

Even though you might not agree when you are frustrated!

In this class, the focus is on understanding the code

You don't have to write (much) code yourself
We'll be using a user-friendly, intuitive approach to R specifically fine-tuned
towards data wrangling and cleaning

18 / 44

Why R?
R is a programming language (like others such as Python, Matlab, C++)

It provides a set of basic functions and operations which you can execute on .. data

A function is, like in mathematics, something that takes an input and transforms it
into an output

A few short examples:

mean(c(1,2,3))

[1] 2

x <- c(1,2,3,4)
y <- c(2,4,1,2)

cor(x,y)

[1] -0.3077935

19 / 44

Preview
A short preview of what R can create:

library(ggplot2)

ggplot(data = mtcars, aes(x = wt, y = mpg)) +
 geom_smooth(method = "lm", col = "red") +
 geom_point()

20 / 44

Preview
A short preview of what R can create:

female male

mean sd N mean sd N

bill_length_mm 42.10 4.90 165 45.85 5.37 168

bill_depth_mm 16.43 1.80 165 17.89 1.86 168

flipper_length_mm 197.36 12.50 165 204.51 14.55 168

body_mass_g 3862.27 666.17 165 4545.68 787.63 168

year 2008.04 0.81 165 2008.04 0.81 168

21 / 44

RStudio

22 / 44

RStudio
RStudio is an IDE (Integrated Development Environment) focused on R

Rstudio is a piece of software used to make programming in R easier
Apart from allowing us to program, it'll help us do other things, like write up
documents and interpret our code output, as we will see shortly.

This is what RStudio looks like:

23 / 44

RStudio
You can download R and RStudio from https://posit.co/download/rstudio-desktop/

Make sure to first download R, the programming language

Click "Download & Install R"

And then download Rstudio, the program which we use to write our code (in R) with

Scroll down and select your Operating System

24 / 44

https://posit.co/download/rstudio-desktop/

RStudio: Layout
RStudio contains four subscreens (three if you haven't opened an R script yet)

The upper left screen is a script - usually a .R file or an .Rmarkdown file

You write and save your code up here

The bottom left is the console

The console is asking you "What should I do next?": this is an open R session
You can use it to e.g. install packages, and try out stuff

The upper right contains various tabs, the most important of which is the environment

This stores all the objects you have made into your (RAM) memory

The bottom right contains a File Explorer, and a Graphics Viewer

25 / 44

Basics in RStudio: The main window
In this course, we'll mainly focus on the upper left part (A .R or .Rmd file where you
write your code in)

If you have installed Rstudio, try creating a new Rmarkdown file file by File > New File >
Rmarkdown

You can use the default options and click OK.

The upper left window is the main window for writing and editing scripts

This is where you write, edit, and save your R scripts.
It's like a digital notebook where you write down your R code. Here, you can write
lines of code to perform calculations, manipulate data, create visualizations, and
much more. It's where you spend most of your time crafting your R programs

We will learn a lot about Rmarkdown during the first tutorial

You will also make your midterm and final exams in an Rmarkdown document

26 / 44

Basics in RStudio: The console
The lower left window is the console: The console is like a command center where you
can interact with R in real-time

You can think of it as a place where you give orders to R, and it immediately
executes them and shows you the results
When you run your scripts (the code you've written) from the editing window, the
results often appear in the console
It's also where error messages show up if something goes wrong with your code
The console is a valuable tool for testing small bits of code, experimenting with
functions, and getting immediate feedback from R

Try typing a calculation in the console, like 1+1

27 / 44

Libraries or "Packages"
Before proceeding to do anything else in RStudio, it is useful to download and install a
couple of packages or libraries

In R, packages are collections of functions, datasets, and other resources that extend
the capabilities of the base R system.

They are essentially bundles of code that are created by other users or developers to
provide additional functionality for specific tasks, such as data manipulation, statistical
analysis, visualization, machine learning, and more.

Many students include things like install.packages() in their code, which prompts R
to (re-)install the package every time the code is run.

Don't do this! As a rule, you should install packages in the console, not in your R
script

You can install packages using the install.packages() function, with the name of the
package you want to install within brackets

28 / 44

Installing or Loading Packages
Once a package is installed, you need to load it into your R session before you can use
its functions and data.

Compare this to installing a video game and then clicking it to be able to play

In R, like with video games, you have to install packages, and only then, you can use
them

When you want to use them, you have to tell R that you want to use them

You do this by means of the library() command, with the name of the package
within brackets

29 / 44

The First Packages to Install
The first package we will install is a package manager, which allows you to either load
or install packages, depending on whether the package is already installed

This package manager is called pacman . To install it, use:

install.packages("pacman")

This package manager gives us the opportunity to use one command to install and/or
load packages, depending on whether the package is already installed
The second package we install is called tidyverse . Accordingly, we can now use
p_load() from the pacman package to to install tidyverse :

library(pacman)
p_load(tidyverse)

30 / 44

The Rtools library
If you're using Windows, Rtools allows you to install other packages faster and more
efficiently. To install Rtools , now use:

p_load(Rtools)

We'll come across much more packages later. Sometimes, you might forget to load a
package. In that case, you might get an Error like:

Error in function() : could not find function "function"

Which is a clue that you should load the correct package.

If you use pacman , make sure to load pacman by library(pacman) in each R session

If you don't, you can just load libraries by e.g. library(tidyverse)

31 / 44

The Tinytex Library
In the exams, we'll be making use of RMarkdown (later more) to generate .pdf
documents from R code and text.

In order to generate these .pdf files, you need a piece of software called Latex

You can download a lightweight implementation of latex using R by:

Firstly installing the tinytex package (p_load('tinytex') or
install.packages(tinytex))
Secondly, using this package to install latex:

tinytex::install_tinytex()

32 / 44

RMarkdown, R Projects, and Working
Directories

33 / 44

RMarkdown
R Markdown provides an authoring framework for data science. You can use a single R
Markdown file to:

Save and execute code
Generate nice reports that can be shared with an audience
Combine text and code in a nice and easy way
In RStudio: File > New File > R Markdown..

Let's watch this video as a short introduction to Rmarkdown

You'll be seeing a lot of Rmarkdown documents in this class

These slides were also created with Rmarkdown

34 / 44

https://vimeo.com/178485416

RMarkdown
RMarkdown is slightly different from e.g. Microsoft Word, in the sense that you have to
compile a document

This is a deviation from the "What you see is what you get" approach

Compiling a document is called knitting (see the button "Knit" on top of your
document)

Technically, when you knit an RMarkdown document, RStudio launches a different, new
R session

It will run the code from the RMarkdown file from front to back
But will not take into account the stuff that is currently in memory
Remember, you can see what is in memory in the top right window of RStudio

So be careful, if you have implemented something in the console, but have not written
it in RMarkdown

Then, RMarkdown doesn't know how to find that something

35 / 44

Working Directories
In general, computers organize files and directories like trees, with a layered structure
of folders

In Windows, they start with the root C (or your hard drive name):
E.g. C://Users/yourname/Documents/R

In Mac/Linux, the root directory has no name, but can be accessed with a tilde (~)
sign

E.g. ~/Users/yourname/Documents/intro_ads

By default, the R console takes a directory to be its reference point

Depending on the system, this is usually your document directory, or your home (~)
directory

This directory is called your working directory

36 / 44

Working Directories
You can see what working directory you are in by running the function getwd()
without any arguments.
The working directory is where everything you want to save in R will be saved unless
you specify somewhere else
R will also be able to access all files in the working directory (and sub-directories)
easily without you needing to know the full file path.

37 / 44

Suppose this is your file tree: E.g. if your working directory is
~/Users/jones/Desktop/ , you can
move to applications by
../../../Applications

Or if your working directory is ~/bin ,
you can move to local by
../usr/local .

Navigating Directories
From a particular working directory, you can move to folders up the tree by means of
../ , and down the tree by entering a folders name

38 / 44

Navigating Working Directories
In sum, there are two ways in which you can tell R (or any other programming
language) where you want R to look for files:

Specifying the directory from the root (referred to by C://.. or ~/)
Specifying the directory from your current working directory (referred to by ./)

Try using this with the function list.files in R

list.files('~') will give the file in your root directory whereas list.files('.')
will give the files in your current working directory
list.files('./Downloads') will give the files in the folder Downloads (if there is
a folder Downloads in your current working directory)

39 / 44

R Projects
This is where R projects come in, with the file extension .Rproj

A project in RStudio is simply a file which keeps track of the environment and
standardize a working directory for a project

You should create an R project for this course
We will do this in the tutorial

Then, every time you open Rstudio, you should select File > Open Project

Or you could simply go to your File explorer and click the .Rproj file: this will
launch RStudio
Your working directory is now automatically the directory in which the .Rproj file
is located

However, note that in .Rmd documents by default, the working directory for R code
chunks is the directory that contains the Rmd document.

For example, if the path of an Rmd file is ~/Downloads/foo.Rmd , the working
directory under which R code chunks are evaluated is ~/Downloads/ .

40 / 44

Working Directories and R Markdown
In more detail, this means when you refer to external files with relative paths inside
Rmarkdown code chunks, you need to know that these paths are relative to the
directory of the Rmd file.
With the aforementioned .Rmd example file, read.csv("data/iris.csv") in a code
chunk means reading the CSV file in ~/Downloads/data/iris.csv .

So you in fact have two working directories

One for in the console (which you can see while looking at your console) and one
for the Rmarkdown document
In your RMarkdown code chunks, you refer to files in the same folder as e.g.:
./graph1.png , or .document3.Rmd
Whereas in the console, your working directory is the directory in which the .Rproj
file is:
So you would access them by e.g. ./assignment1/graph1.png if your RMarkdown
document is in the folder assignment1

We will discuss this during the first tutorial

41 / 44

Recapitulation

42 / 44

Recapitulation
We talked about various aspects of data science today

What is the purpose of collecting data?
Including importing, transforming (together called tidying), analyzing, and reporting
your data
And its relationship to causal inference (to explain vs. to predict)

We then got to download R and Rstudio, and got to know Rstudio

And finally, we talked about RMarkdown, R projects and working directories

Next lecture: we'll talk about R programming in more detail!

Coming up: collecting data
Finally: voting time for lecture 8

43 / 44

Voting Time
5 themes for final lecture: Schooling on Income, Work Experience on Income,
Democracy on Economic Activity, Development on Climate Change, Female Labor and
Fertility Rates

Go to https://www.menti.com/alvf896go6w3

Or scan this QR Code:

44 / 44

https://www.menti.com/alvf896go6w3

