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Lecture 2: Introduction to Programming
Overview of this class:

Lecture 1: Introduction to Data Science & R
This lecture: Lecture 2: Introduction to Programming
Lecture 3: Getting Data, API & Databases
Lecture 4: Getting Data, Web Scraping
Lecture 5: Transforming and Cleaning Data
Lecture 6: Spatial and Network Data
Lecture 7: Text Data & Text Mining
Lecture 8: Data Science Project
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R Basics
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Getting Started
At its basics, R is basically a calculator on steroids.

We can type an arithmetic expression into our script, then source it into the console
and receive a result:

2+2

## [1] 4

There is a huge range of mathematical functions in R, some of the most useful include
log , exp , and sqrt :

sqrt(4)

## [1] 2

It’s important to realize that when you run code as we’ve done above, the result of the
code (or value) is only displayed in the console.
This can sometimes be useful, but it is usually much more practical to store the
value(s) in a object.
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Objects
At the heart of almost everything you will do in R is the concept that everything in R is
an object.

These objects can be almost anything, from a single number or character string
(like a word) to more complex structures like a plot output or a summary of a
statistical model.

To create an object we simply give the object a name.

We can then assign a value to this object using the assignment operator <-

hello <- 1

We refer to 1 as the value of the object and to hello  as the name of the object
To view the value of the object you simply type the name of the object:

hello

## [1] 1
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Memory
All of the objects you create will be stored in R's memory:

You can view all the objects in your workspace in RStudio by clicking on the
Environment tab in the top right hand pane.

There are many different types of values that you can assign to an object. For example:

sentence <- "Hello my name is Bas"
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Looking Up Objects
Here we have created an object called sentence  and assigned it a value of "Hello, my
name is Bas", which is a character string.

Notice that we have enclosed the string in quotes. If you forget to use the quotes
you will receive an error message:

sentence <- Hello

## Error in eval(expr, envir, enclos): object 'Hello' not found

The reason is that R, like every other programming language, reserves unquoted names
for objects that may or may not have been stored in memory. Hence, if you type:

Hello

## Error in eval(expr, envir, enclos): object 'Hello' not found

in the console, you are telling R: "Go to your memory. Look up what value is given to the
object called Hello."
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Looking Up Objects
However, as you can see in your memory (Environment, upper right window), there is
no object called Hello.

Hence, R will give you an error, saying it cannot find this object in memory.

Secondly, computer programming languages cannot handle spaces well.

Therefore, as a rule, always give things names without spaces. So this doesn't work:

my object <- "hi"

## Error: <text>:1:4: unexpected symbol
## 1: my object
##        ^

But this does:

my_object <- "hi"
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Doing Things With Objects
You can also overwrite objects in your memory:

my_object <- "hi again"

Once we have created a few objects, we can do things with our objects. For example,
the following code performs a simple calculation using objects:

numerator <- 6
denominator <- 5

numerator/denominator

## [1] 1.2
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Error Messages
As you first start programming in R, you'll encounter error messages frequently. For
example:

object1 <- "hello"
object2 <- "world!"
object3 <- object1 + object2

## Error in object1 + object2: non-numeric argument to binary operator

Which means you are doing something illegal or unexpected with your objects: The
error message is essentially telling you that either one or both of the objects aren't
numbers and therefore can't be added

10 / 46



Error Messages
Another error message that you’ll get quite a lot when you first start using R is Error:
object 'X' not found. For example:

new_object <- c(object1, object3)

## Error in eval(expr, envir, enclos): object 'object3' not found

R returns an error message because we haven’t created the object object1  yet.
Another clue that there’s a problem with this code is that, if you check your
environment, you’ll see that object object1  has not been created.
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Functions
Up until now we’ve been creating simple objects by directly assigning a single value to
an object.

We want to create more complicated objects for potentially more complex tasks

The first function we will learn about is the c()  function.

c()  is short for concatenate and can be used to store a series of values in a data
structure called a vector

object <- c(1,2,3,4,5)
object

## [1] 1 2 3 4 5
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Functions
When you use a function in R, the function name is always followed by a pair of round
brackets even if there’s nothing contained between the brackets.

The argument(s) of a function are placed inside the round brackets and are separated
by commas. You can think of an argument as way of customizing the use or behavior of
a function.

In the example on the previous slide, the arguments are the numbers we want to
concatenate.

How do you know which function to use for what task?

Each function will always have a help document associated with it which will
explain how to use the function: try typing ?c  in the console
Google and ChatGPT can also help out
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Examples of Functions
Some example of functions we might use in the future are:

mean(object)

## [1] 3

var(object)

## [1] 2.5

median(object)

## [1] 3

length(object)

## [1] 5

Can you guess what these do?
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More Useful Functions
Sometimes it can be useful to create a vector that contains a regular sequence of
values in steps of one. We can do that in the following, special way:

1:10

##  [1]  1  2  3  4  5  6  7  8  9 10

Other useful functions for generating vectors of sequences include the seq()  and
rep()  functions.

rep(2, 10)

##  [1] 2 2 2 2 2 2 2 2 2 2

seq(from = 1, 
    to = 10, 
    by = 1.5)

## [1]  1.0  2.5  4.0  5.5  7.0  8.5 10.0
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Indexing
To extract one or more values from a vector we use the [ ]  notation.

new_object <- c(4, 23, 1)

new_object[2]

## [1] 23

new_object[c(1, 3)]

## [1] 4 1

new_object > 1

## [1]  TRUE  TRUE FALSE

new_object[new_object > 1]

## [1]  4 23
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Vectorization
One of the cool things about R functions is that most of them are vectorized.

This means that the function will operate on all elements of a vector without
needing to apply the function on each element separately.

new_object * 3

## [1] 12 69  3

new_object + 3

## [1]  7 26  4
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Data Structures
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Data Types
R has a couple basic types of data; numeric, integer, logical, and character.

We have already seen a couple of them.

Numeric data are numbers that contain a decimal. Actually they can also be
whole numbers but we’ll gloss over that.
Integers are whole numbers (those numbers without a decimal point).
Logical data take on the value of either TRUE or FALSE. There’s also another
special type of logical called NA to represent missing values.
Character data are used to represent string values. You can think of character
strings as something like a word (or multiple words).

You can check which data type an object is by using the class()  function:

class(new_object)

## [1] "numeric"

You can also change variables from one class to another with as.character() ,
as.numeric() , etc.
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More Complicated Data Structures
R also has more complicated data structures:
The next data structure we will quickly take a look at is a list.

my_list <- list(name = "John", age = 30, city = "New York")
my_list

## $name
## [1] "John"
## 
## $age
## [1] 30
## 
## $city
## [1] "New York"
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Data Structures: Lists
Here's a slightly more complicated list:

hello <- list(a=10, b="6", 5, d = list(a=11, f=1:20, "My name is Bas"))
hello

## $a
## [1] 10
## 
## $b
## [1] "6"
## 
## [[3]]
## [1] 5
## 
## $d
## $d$a
## [1] 11
## 
## $d$f
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
## 
## $d[[3]]
## [1] "My name is Bas" 21 / 46



Selecting From A List
Selecting from a list is done with the help of [[]]  syntax
For example:

hello[['a']]

## [1] 10

.. will give you access to the value of the element a .

hello[['d']]

## $a
## [1] 11
## 
## $f
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
## 
## [[3]]
## [1] "My name is Bas"
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Indexing a List
As you can see, some objects inside our list  do not have a name.

Those can be selected on the basis of position:

hello[[3]]

## [1] 5

hello[['d']][[3]]

## [1] "My name is Bas"

In fact, this also works for elements that do have a name:

hello[[1]] #the same as hello[['a']]

## [1] 10
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Data Structures: data.frames
By far the most commonly used data structure to store data in is the data.frame .
Typically, in a data frame each row corresponds to an individual observation and each
column corresponds to a different measured or recorded variable.
A useful way to think about data frames is that they are essentially made up of several
vectors (columns) with each vector containing its own data type but the data type can
be different between vectors.

my_df <- data.frame(name = c("John", "Alice", "Bob"), 
                    age = c(30, 25, 35), 
                    city = c("New York", "Los Angeles", "Chicago"))

my_df

##    name age        city
## 1  John  30    New York
## 2 Alice  25 Los Angeles
## 3   Bob  35     Chicago
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Indexing data.frames
Selecting from a data.frame  works similarly, but with a slightly different syntax.

We select the columns of a data.frame by the data.frame[i]  syntax
For example:

my_df[2]

##   age
## 1  30
## 2  25
## 3  35

We select the rows of a data.frame by the data.frame[i,]  syntax
For example:

my_df[2,]

##    name age        city
## 2 Alice  25 Los Angeles

Both ways take a data.frame as an input and as an output (check this with the class
function)
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It is also possible to index data.frames
by column names:

my_df['name']

##    name
## 1  John
## 2 Alice
## 3   Bob

Or to take a slice of a data.frame by
position:

my_df[1:2, c(1,3)]

##    name        city
## 1  John    New York
## 2 Alice Los Angeles

Or a combination of both:

my_df[1, c('name', 'city')]

##   name     city
## 1 John New York

Another way to select columns of a
data.frame is this:

my_df$name

## [1] "John"  "Alice" "Bob"

Indexing data.frames
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Tibbles Instead of Data.Frames
I recommend that you use the function tibble  from the tidyverse  packages instead
of data.frame

This function is nearly identical, but just slightly more flexible

Compare this:

data.frame(x = 1:3, y = x + 1)

## Error in data.frame(x = 1:3, y = x + 1): object 'x' not found

To this:

library(tidyverse)
tibble(x = 1:3, y = x + 1)

## # A tibble: 3 × 2
##       x     y
##   <int> <dbl>
## 1     1     2
## 2     2     3
## 3     3     4 27 / 46



Summarizing data.frames
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Data.frames as Spreadsheets
Usually (and in this course), your data.frame is like a spreadsheet.

Pretty much every data file you import (a .csv , a .xlsx , etc.) will be converted
into a data.frame

It contains useful information that you might want to have a closer look at

There exist various ways of summarizing data.frames.

In this course, we'll first use the apparatus we have just learned to look more closely
at data.frames

Afterwards, we'll have a close look at the tidyverse, a set of packages making working
with data.frames a little bit easier
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Dealing with NA  Observations
Sometimes your data contain NA  observations

This can be problematic because of the following:

data_na <- tibble(a = c(1:2, NA, 4), b = 5:8)
data_na

## # A tibble: 4 × 2
##       a     b
##   <dbl> <int>
## 1     1     5
## 2     2     6
## 3    NA     7
## 4     4     8

mean(data_na['a'])

## [1] NA
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Consider this logical test:

!is.na(data_na['a'])

##          a
## [1,]  TRUE
## [2,]  TRUE
## [3,] FALSE
## [4,]  TRUE

We select only the rows that aren't NA
in column a

data_na[!is.na(data_na['a']), ]

## # A tibble: 3 × 2
##       a     b
##   <dbl> <int>
## 1     1     5
## 2     2     6
## 3     4     8

Dealing with NA  Observations
There are a couple of solutions for this:

Just as we did with vectors, we can also extract data from our data frame based
on a logical test.
We can use all of the logical operators that we used for our vector examples:
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data_na

## # A tibble: 4 × 2
##       a     b
##   <dbl> <int>
## 1     1     5
## 2     2     6
## 3    NA     7
## 4     4     8

data_na['b'] == 5 | data_na['a'] == 2

##          b
## [1,]  TRUE
## [2,]  TRUE
## [3,]    NA
## [4,] FALSE

data_na[data_na['b'] == 5 | data_na['a

## # A tibble: 3 × 2
##       a     b
##   <dbl> <int>
## 1     1     5
## 2     2     6
## 3    NA    NA

Filtering Out Observations
This can also be used in a more general way, when wanting to zoom in on particular
parts of a data.frame:
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Summarizing the Data
Given that you have selected the part of the data you care about, you can use
functions we've already seen to summarize the data:

mean(data_na[data_na['b'] == 5 | data_na['b'] == 6, ]$a)

## [1] 1.5

data_na[!is.na(data_na['a']), ]

## # A tibble: 3 × 2
##       a     b
##   <dbl> <int>
## 1     1     5
## 2     2     6
## 3     4     8

median(data_na[!is.na(data_na['a']), ]$b)

## [1] 6

This is a quite complicated way to compute relatively simple statistics.
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The tidyverse  package
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Introduction to tidyverse
The tidyverse is a collection of R packages designed for data science. It is based on
the principles of tidy data and provides a consistent set of tools for data manipulation,
visualization, and analysis.

Notably, it contains dplyr : a package for data manipulation, providing functions for
filtering, selecting, mutating, summarizing, and arranging data, and tidyr : a package
for tidying data, providing functions for reshaping data into tidy formats.

It can be installed using the install.packages()  function

And loaded by:

library(tidyverse)
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# Example without pipe operator
result <- sqrt(mean(c(1, 4, 9, 16)))

# Example with pipe operator
result <- c(1, 4, 9, 16) |>
            mean() |>
            sqrt()

Understanding the Pipe Operator in R
The pipe operator |> is a powerful tool in the R programming language that simplifies
and enhances the readability of code, especially in data analysis workflows.

It takes the output from one function and uses it as the first argument of the next
function in the chain.

It enables a more natural, left-to-right style of coding, akin to how we read and
interpret information.
Example (more will follow):
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data_na |>
  drop_na()

## # A tibble: 3 × 2
##       a     b
##   <dbl> <int>
## 1     1     5
## 2     2     6
## 3     4     8

data_na |>
  filter(!is.na(a))

## # A tibble: 3 × 2
##       a     b
##   <dbl> <int>
## 1     1     5
## 2     2     6
## 3     4     8

Dealing with NA's and Filtering
In the tidyverse  package, dealing with NA  observations is very easy: we can use the
drop_na  function:
In addition, we can use the filter  function, allowing us to filter on a specific variable
with respect to NA  observations:
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Filtering
More generally, we can use filter  in the same way as we did when devising logical
conditions to select variables:

data_na |>
  filter(a > 1 | b < 6)

## # A tibble: 3 × 2
##       a     b
##   <dbl> <int>
## 1     1     5
## 2     2     6
## 3     4     8

data_na |>
  filter(b == 8)

## # A tibble: 1 × 2
##       a     b
##   <dbl> <int>
## 1     4     8
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Finding Summary Characteristics
Finding summary characteristics can be done with the summarize  function.
In addition to the data, the summarize function takes arguments in the form of name =
expression , where name is the name of the column to be created in the output and
expression is the computation to be applied.

data_na |>
  filter(!is.na(a)) |>
  summarize(mean_a = mean(a), median_b = median(b))

## # A tibble: 1 × 2
##   mean_a median_b
##    <dbl>    <int>
## 1   2.33        6
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Grouping By
It is often necessary to perform operations on groups within your data.
The group_by  function allows you to group data by one or more variables
It is often used in conjunction with summarize
Consider this dataset:

mtcars |> as_tibble()

## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
##  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
##  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
##  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
##  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
##  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
##  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
##  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
##  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
## 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
## # ℹ 22 more rows
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Grouping By
And these summary statistics:

mtcars |> 
  group_by(cyl) |> 
  summarize(max_usage = max(mpg), mean_gears = mean(gear), median_hp = median(hp))

## # A tibble: 3 × 4
##     cyl max_usage mean_gears median_hp
##   <dbl>     <dbl>      <dbl>     <dbl>
## 1     4      33.9       4.09       91 
## 2     6      21.4       3.86      110 
## 3     8      19.2       3.29      192.
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Slicing
slice_max  selects rows with the maximum values of a specified variable.
It is useful when you want to identify the rows that correspond to the highest values
in a particular variable.
You can specify the variable based on which you want to find the maximum using the
order_by argument.
By default, slice_max  selects only the first row with the maximum value. You can
specify the number of rows to select using the n  argument.

slice_max(mtcars, order_by=mpg, n=2)

##                 mpg cyl disp hp drat    wt  qsec vs am gear carb
## Toyota Corolla 33.9   4 71.1 65 4.22 1.835 19.90  1  1    4    1
## Fiat 128       32.4   4 78.7 66 4.08 2.200 19.47  1  1    4    1

slice_min  works in the same way
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Adding or Changing Variables
It is also possible to change variables, or add new variables to your dataset

This is done by the mutate  function

Sometimes, the if_else  function also comes in handy

The mutate  function takes the input data frame .data and creates a modified version
of it by adding or modifying columns based on the specified transformations.

You specify the transformations using the new_column = expression  syntax, where
new_column  is the name of the new column you want to create or the name of an
existing column you want to modify, and expression is the R expression that defines
how the new column should be calculated.

The if_else  function is used to perform vectorized conditional operations on data
frames.

It is particularly useful when you need to create or modify columns based on
specific conditions.
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Adding or Changing Variables
The syntax of the if_else  function is:

if_else(condition, true_value, false_value)

Oftentimes, you overwrite your data.frame with the new, mutate d data.frame
For example:

mtcars <- mtcars |> 
  mutate(hp_per_cylinder = hp/cyl, 
         sustainable = if_else(mpg > 25, 1, 0))

mtcars[c('hp_per_cylinder', 'sustainable')] |> 
  head(4)

##                hp_per_cylinder sustainable
## Mazda RX4             18.33333           0
## Mazda RX4 Wag         18.33333           0
## Datsun 710            23.25000           0
## Hornet 4 Drive        18.33333           0
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Recapitulation
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Recapitulation
We have seen the basics of R today

We have seen various ways to accomplish several common-sensical tasks:

We have seen basic operations, ways of selecting and filtering in R
And we have also seen an arguably simpler variant of performing these same
operations: the tidyverse
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