
Introduction to Applied Data Science
Lecture 3: Getting Data, API’s and Databases

Bas Machielsen
Utrecht University
2024-04-22

Databases

2 / 51

Lecture 3: Getting Data, API's &
Databases

Overview of this class:

Lecture 1: Introduction to Data Science & R
Lecture 2: Introduction to Programming
This lecture: Lecture 3: Getting Data, API & Databases
Lecture 4: Getting Data, Web Scraping
Lecture 5: Transforming and Cleaning Data
Lecture 6: Spatial and Network Data
Lecture 7: Text Data & Text Mining
Lecture 8: Data Science Project

3 / 51

Where To Get Data?
Where does data come from?

Whole spectrum of potential data sources, together with some examples

R data packages
Importing data found on the web
Extracting data from API servers

Next lecture: focus on one particular way of data collection, web scraping

4 / 51

Where To Get Data?
Haggerty (2023) employs the following characterization of datasets:

Pre-cleaned datasets posted on secondary repositories

E.g. Harvard Dataverse, Kaggle, Replication Packages, GitHub.

Open data libraries

E.g. my overview here, IMF, World Bank. R packages containing data.

Websites of primary data providers

Government statistical agencies; some private companies and NGOs; scientific
researchers.

5 / 51

https://bas-m.netlify.app/blog/2022-12-06-overview-of-economic-history-datasets-and-databases/

Where To Get Data?
Liberate previously inaccessible data

E.g. Government or private sector; Netherlands: WOB Request

Self-compiled data

E.g. Create your own dataset from many disjoint sources; E.g. historical archives,
websites, PDF reports.

Collect your own primary data

E.g. from surveys or experiments, phones, registration devices, etc.

6 / 51

Starting Points
Scientific Literature

Links:

Google dataset search
Datasets for quantitative research
My own overview

Websites of Governmental Agencies or Institutions

Google!

7 / 51

https://datasetsearch.research.google.com/
https://libraryguides.missouri.edu/datasets/public-use
https://bas-m.netlify.app/blog/2022-12-06-overview-of-economic-history-datasets-and-databases/

Example: the wbstats package

8 / 51

Interacting with API's
Usually, websites of Governmental Agencies or Institutions have a lot of versatile data
available

They usually provide a User Interface on their website to enable you to inspect, but
also download, the required data

Recently, however, many have found it useful to extract and obtain data directly from
programming environments such as R

That means that we send a request directly from R to search for, and acquire, data,
without having to resort to a user interface

In general, in this course, we want to be able to communicate with computers through
code, rather than through clicks and user interfaces

The following provides an example of this

9 / 51

Example: World Bank Data
wbstats is an R package for searching and downloading data from the World Bank
API

For now, you can think of this as a package extracting data from a large on-line
database in a convenient way

There also exist similar packages with access to the same data for other programming
languages

We should get used to accessing data by providing instructions in code instead of
using a graphical user interface

In R, you can install this package by install.packages('wbstats')

Or by:

library(pacman)
p_load(wbstats)

10 / 51

Searching for Data
A first thing you can do after installing a package is inspecting its functions

In R, packages come with a document, sometimes called a "vignettes", explaining all of
their functions

You can find that through Google if you like: this documentation was found by Googlig
"wbstats documentation"

However, there are also various ways in R to help you navigate the package:

Firstly, you can go to the console, type the name of the package followed by two
colons (::)
RStudio will show you a list of all functions contained in this package

You can also check out the documentation by entering ?packagename in the console

If you then click on Index, you will again see a list of all functions, which you can
click on to read the documentation

Finally, you can also access the documentation of a function directly by entering ?
functionname in the console (after loading the corresponding library) 11 / 51

https://cran.r-project.org/web/packages/wbstats/vignettes/wbstats.html

Using the wbstats Package
In the wbstats package, the first thing we might want to do is look for data

This corresponds to what you would do on a website: you'll be looking for some data,
deciding what to download

In R, this is done through functions. In particular, we can look for data in various ways
using the wb_search function.

There is also wb_cachelist , which is an overview of the available data:

library(wbstats)
overview <- wb_cachelist

Note that this is a list containing various objects. Try clicking on it in your memory
pane to see what objects it contains.

12 / 51

Inspecting Data
For example, we can look at the countries contained in the World Bank Database:

overview$countries |> select(1:9) |> head(4)

A tibble: 4 × 9
iso3c iso2c country capital_city longitude latitude region_iso3c region_iso2c
<chr> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 ABW AW Aruba Oranjestad -70.0 12.5 LCN ZJ
2 AFG AF Afghanistan Kabul 69.2 34.5 SAS 8S
3 AFR A9 Africa <NA> NA NA <NA> <NA>
4 AGO AO Angola Luanda 13.2 -8.81 SSF ZG

13 / 51

Other Useful Overviews
A couple of other useful overviews are:

overview$topics |> head(7)

A tibble: 7 × 3
topic_id topic topic_desc
<dbl> <chr> <chr>
1 1 Agriculture & Rural Development "For the 70 percent of the world's poor w
2 2 Aid Effectiveness "Aid effectiveness is the impact that aid
3 3 Economy & Growth "Economic growth is central to economic d
4 4 Education "Education is one of the most powerful in
5 5 Energy & Mining "The world economy needs ever-increasing
6 6 Environment "Natural and man-made environmental resou
7 7 Financial Sector "An economy's financial markets are criti

14 / 51

Example: World Bank Data
Or:

overview$sources |> head(5)

A tibble: 5 × 9
source_id last_updated source source_code source_desc source_url
<dbl> <date> <chr> <chr> <lgl> <lgl>
1 1 2019-10-23 Doing Business DBS NA NA
2 2 2020-10-15 World Development Indic… WDI NA NA
3 3 2020-09-28 Worldwide Governance In… WGI NA NA
4 5 2016-03-21 Subnational Malnutritio… SNM NA NA
5 6 2020-10-16 International Debt Stat… IDS NA NA

Usually, many similar packages contain such "overview" functions so you can search for
the data you want.

15 / 51

Searching for Data of Interest
You can search within any category you desire with wb_search

Most obviously, with the name of a variable:

wb_search("GDP per capita") |> head(5)

A tibble: 5 × 3
indicator_id indicator indicator_d
<chr> <chr> <chr>
1 5.51.01.10.gdp Per capita GDP growth GDP per cap
2 6.0.GDPpc_constant GDP per capita, PPP (constant 2011 international $) GDP per cap
3 NV.AGR.PCAP.KD.ZG Real agricultural GDP per capita growth rate (%) The growth
4 NY.GDP.PCAP.CD GDP per capita (current US$) GDP per cap
5 NY.GDP.PCAP.CN GDP per capita (current LCU) GDP per cap

16 / 51

Searching for Data of Interest
It might also make sense to see what data there is available in a more detailed way:

wb_search("Gender", fields = "topics") |> head(5)

A tibble: 5 × 3
indicator_id indicator
<chr> <chr>
1 IC.FRM.FEMM.ZS Firms with female top manager (% of firms)
2 IC.FRM.FEMO.ZS Firms with female participation in ownership (% of firms)
3 SE.ADT.1524.LT.FE.ZS Literacy rate, youth female (% of females ages 15-24)
4 SE.ADT.1524.LT.FM.ZS Literacy rate, youth (ages 15-24), gender parity index (GPI)
5 SE.ADT.1524.LT.MA.ZS Literacy rate, youth male (% of males ages 15-24)

17 / 51

Combining Data
After you've found the variables you are interested in, you need to find a way to extract
the data.
This is also done using a function, in this case wb_data . Check out the documentation
with ?wb_data

In order to instruct the function to extract data, we need to work with indicators

We can use R's memory to save the indicator_id 's somewhere, e.g.:

variables <- c("NY.GDP.PCAP.KD.ZG", "SE.ADT.LITR.ZS")
data <- wbstats::wb_data(variables,
 start_date = 2015,
 end_date = 2022)

18 / 51

Inspecting the Result
We can inspect the result:

data <- data |>
 filter(if_all(everything(), ~ !is.na(.x)))

data |> head(8)

A tibble: 8 × 6
iso2c iso3c country date NY.GDP.PCAP.KD.ZG SE.ADT.LITR.ZS
<chr> <chr> <chr> <dbl> <dbl> <dbl>
1 AW ABW Aruba 2020 -24.1 98.0
2 AF AFG Afghanistan 2021 -23.0 37.3
3 AO AGO Angola 2022 -0.0968 72.4
4 AL ALB Albania 2022 6.14 98.5
5 AE ARE United Arab Emirates 2019 0.324 97.8
6 AE ARE United Arab Emirates 2021 3.49 98.1
7 AE ARE United Arab Emirates 2022 6.98 98.3
8 AM ARM Armenia 2016 0.646 99.7

This is a data.frame like the one we've seen in the previous lecture!

19 / 51

Manually Importing Data in R

20 / 51

Importing Data in R
If we have found a dataset somewhere on the web, we can also use the function
download.file to download a file from a URL:

Here, I'm downloading the Cross-country Historical Adoption of Technology (CHAT)
dataset. CHAT is an unbalanced panel dataset with information on the adoption of
over 100 technologies in more than 150 countries since 1800.

data_url <- "https://raw.githubusercontent.com/datasets/historical-adoption-of-tec

Data from https://www.nber.org/research/data/cross-country-historical-adoption-t
download.file(data_url,
 destfile = "chat.csv")

The function download.file() needs two arguments, an URL which represents an
endpoint for a downloaded file, and a destination file. (To which directory is this file
now downloaded?)

21 / 51

Importing Data in R
In this case, I have found this dataset on this repository

You should make sure to find the right link
The button you click that actually downloads the file is usually the correct link
On that button, right click the file > copy download link

The advantage of this approach is that you engage in reproducible downloading

The disadvantage is that it downloads anew every time you run the script
Which can be prevented by:

if(is.na(list.files(path=".", pattern='chat.csv')))
 { download.file(data_url, destfile = "chat.csv") }

22 / 51

https://github.com/datasets

Importing Data in R - .csv
Now we have downloaded the file, we should import it to R
This file is an .csv file. We can use the readr library to read the data into R:

library(readr)
data <- read_csv('chat.csv')

data |> head(5)

A tibble: 5 × 113
country_name year ag_harvester ag_milkingmachine ag_tractor atm aviationpkm avi
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Afghanistan 1750 NA NA NA NA NA
2 Afghanistan 1751 NA NA NA NA NA
3 Afghanistan 1752 NA NA NA NA NA
4 Afghanistan 1753 NA NA NA NA NA
5 Afghanistan 1754 NA NA NA NA NA
ℹ 102 more variables: cabletv <dbl>, cellphone <dbl>, cheque <dbl>, computer <dbl>
elecprod <dbl>, fert_total <dbl>, internetuser <dbl>, irrigatedarea <dbl>, kidne
loom_auto <dbl>, loom_total <dbl>, mail <dbl>, med_catscanner <dbl>, med_lithotr
med_mriunit <dbl>, med_radiationequip <dbl>, newspaper <dbl>, pctdaysurg_catarac
pctdaysurg_hernia <dbl>, pctdaysurg_lapcholecyst <dbl>, pctdaysurg_tonsil <dbl>,
pcthomedialysis <dbl>, pctimmunizdpt <dbl>, pctimmunizmeas <dbl>, pctirrigated <
pos <dbl>, radio <dbl>, railline <dbl>, railp <dbl>, railpkm <dbl>, railt <dbl>,23 / 51

Importing Data in R - Other Formats
There are also other formats you can import in R. Usually, you can still use the
read_csv function (or its alternative, read.csv), but you have to specify more
arguments. For example:

.tab :

url1 <- "https://dataverse.harvard.edu/api/access/datafile/3205064?format=tab&gbre
download.file(url1, destfile="data.tab")

24 / 51

Importing Data in R - Other Formats
This can be imported using read_delim from readr :

data <- read_delim('data.tab', skip = 1)

data |>
 head(5)

A tibble: 5 × 6
A B `Concatenating A and B` bdate penroll penroll0
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 10 110 35339 21.5 24.5
2 2 10 210 35340 21.4 24.5
3 3 10 310 35341 21.4 24.4
4 4 10 410 35342 21.4 24.4
5 5 10 510 35343 21.3 24.4

In this case, mind the skip argument. What does it do?

25 / 51

Parsing
By default, read. or read_ type functions assume that the fields in the file are
separated by commas and that the first row contains column names

It also automatically converts character columns containing only numbers into numeric
type, making it convenient for numeric data processing

However, CSV files may use delimiters other than commas, such as tabs or semicolons.
If not specified correctly, read.csv may not parse the file accurately

read.csv('chat.csv', header=F) |>
 as_tibble() |>
 head(3)

A tibble: 3 × 113
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr
1 coun… year "ag_… "ag_… "ag_… "atm" "avi… "avi… "bed… "bed… "bed… "cab… "cel… "che
2 Afgh… 1750 "" "" "" "" "" "" "" "" "" "" "" ""
3 Afgh… 1751 "" "" "" "" "" "" "" "" "" "" "" ""
ℹ 92 more variables: V22 <chr>, V23 <chr>, V24 <chr>, V25 <chr>, V26 <chr>, V27 <ch
V31 <chr>, V32 <chr>, V33 <chr>, V34 <chr>, V35 <chr>, V36 <chr>, V37 <chr>, V38
V42 <chr>, V43 <chr>, V44 <chr>, V45 <chr>, V46 <chr>, V47 <chr>, V48 <chr>, V49
V53 <chr> V54 <chr> V55 <chr> V56 <chr> V57 <chr> V58 <chr> V59 <chr> V60

26 / 51

Writing Files
Similarly, if you have constructed a dataset in R, you can also write it to a file.

You can choose the extension by picking the appropriate function.

For example, we can use write_csv2 in the readr package:

write_csv2 writes without row names, whereas write_csv does

readr::write_csv2(data, 'data1.csv')

27 / 51

Deleting Files
data |> head(5)

A tibble: 5 × 6
A B `Concatenating A and B` bdate penroll penroll0
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 10 110 35339 21.5 24.5
2 2 10 210 35340 21.4 24.5
3 3 10 310 35341 21.4 24.4
4 4 10 410 35342 21.4 24.4
5 5 10 510 35343 21.3 24.4

Sometimes, a good practice might be deleting files

Be careful with this because it may depend on the situation

If you want to delete files, use:

Delete the file
unlink('data.tab')
unlink('data.csv')
unlink('data1.csv')

28 / 51

SQL Servers

29 / 51

SQL Servers
Sometimes data is stored on so-called SQL servers.

For example, because the data is too large to fit into memory at once

Or you don't actually need all of it, only parts or a summary.
Or your data is continuously updated by other people/processes.

To get a part of the data, you submit a query to the SQL server

30 / 51

SQL Servers
SQL is a separate programming language and a little bit less flexible and accessible
than R

We can use the dbplyr package to "translate" R code into SQL code

Thereby using the familiar R syntax to make SQL queries

In this running example, we will make use of a toy SQL database to which we will
submit queries

Usually, you will first connect with online SQL servers and then submit queries
In order to do so, you might have to get an API key, or submit a username and
password
In this case you won't, but we'll touch on how to do that when we talk about API
servers

31 / 51

Connect to SQL Server
We need the packages RSQLite , DBI and dbplyr packages to interact with the SQL
server:

if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, DBI, dbplyr, RSQLite)

Usually SQL servers are part of a paid data collection service
By means of demonstration, we can connect to an empty SQL server and we'll transfer
a data.frame to be the data content
Then we'll submit queries to retrieve the data

This last operation is usually what you do when dealing with real SQL servers

32 / 51

Connect to SQL server
Let us create a connection to a newly-created database:

Create a connection to our new database, penguins.db
You can check that the .db file has been created in your working directory
conn <- dbConnect(RSQLite::SQLite(), "penguins.db")

And let us make a data.frame in R which we subsequently export to the SQL server:
Let us use the palmerpinguins package as a standard data package:

pacman::p_load('palmerpenguins')
penguins_df <- palmerpenguins::penguins

33 / 51

Create Table in Database
Once you have the database created and your data in proper shape, you can go ahead and
create a table inside the database using the dbWriteTable() function. This function can
take multiple arguments, but, for now, let's focus on the following:

conn : The connection to your SQL database
name : The name for the table
value : The table itself

dbWriteTable(conn, "penguins", penguins_df, overwrite=TRUE)

34 / 51

Retrieve Data from Table
Now, we have a connection to an SQL server with data!

Let us try to request some data from it using the SQL language:

dbGetQuery(conn, "SELECT species, island,
 bill_length_mm, body_mass_g, sex
 FROM penguins
 WHERE year == 2007 LIMIT 10")

species island bill_length_mm body_mass_g sex
1 Adelie Torgersen 39.1 3750 male
2 Adelie Torgersen 39.5 3800 female
3 Adelie Torgersen 40.3 3250 female
4 Adelie Torgersen NA NA <NA>
5 Adelie Torgersen 36.7 3450 female
6 Adelie Torgersen 39.3 3650 male
7 Adelie Torgersen 38.9 3625 female
8 Adelie Torgersen 39.2 4675 male
9 Adelie Torgersen 34.1 3475 <NA>
10 Adelie Torgersen 42.0 4250 <NA>

35 / 51

Translate from R to SQL
SQL is an entirely separate language from R

Its exclusive goal is communicating with SQL servers

Fortunately, we don't have to learn SQL: if (when) you know R, you can use the dbplyr
package to translate R code to SQL:

To do so, we use the tbl function to retrieve the data.frame as if it were in
memory:

penguins_sql <- tbl(conn, 'penguins')

36 / 51

Translate from R to SQL
And then we can use R to "translate" our query from R to SQL, so that an SQL server
will understand us!

query <- penguins_sql |>
 filter(bill_length_mm < 39, flipper_length_mm > 190) |>
 arrange(desc(bill_depth_mm))

query |> show_query()

<SQL>
SELECT *
FROM `penguins`
WHERE (`bill_length_mm` < 39.0) AND (`flipper_length_mm` > 190.0)
ORDER BY `bill_depth_mm` DESC

37 / 51

Retrieving Data
Finally, you can execute the query and retrieve the data by:

query |>
 collect()

A tibble: 24 × 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
<chr> <chr> <dbl> <dbl> <int> <int> <chr
1 Adelie Torgersen 38.6 21.2 191 3800 male
2 Adelie Torgersen 34.6 21.1 198 4400 male
3 Adelie Torgersen 37.3 20.5 199 3775 male
4 Adelie Torgersen 37.7 19.8 198 3500 male
5 Adelie Torgersen 35.1 19.4 193 4200 male
6 Adelie Torgersen 36.7 19.3 193 3450 fema
7 Adelie Biscoe 37.6 19.1 194 3750 male
8 Adelie Torgersen 38.7 19 195 3450 fema
9 Adelie Biscoe 37.9 18.6 193 2925 fema
10 Adelie Dream 36.8 18.5 193 3500 fema
ℹ 14 more rows

38 / 51

API Servers

39 / 51

Interacting with API Servers
(from Haggerty, 2023)

An API (Application Programming Interface) is a set of rules that allow different pieces
of software to communicate with each other. Working with an API is like sending a
letter with a request to somebody. That somebody is now a server.

The "roles" in this exchange are as follows:

Server: A powerful computer that runs an API.

Client: A program that exchanges data with a server through an API. (e.g. our R session)
Protocol: The "etiquette" underlying how computers talk to each other (e.g. HTTP).
Methods: The "verbs" that clients use to talk with a server.

The main one that we’ll be using is GET (i.e. ask a server to retrieve information
that is stored on there)

Request: Something specifying what data we're looking for
Response: The server’s response. This includes:

Status Code (e.g. “404” if not found, or “200” if successful).
Header (i.e. meta-information about the response).
Body (i.e. the actual content that we’re interested in). 40 / 51

API Servers
API Servers usually have different endpoints, corresponding to different pieces of
information you might be looking for.

E.g. for Twitter API: Search Tweets, Timelines, Retweets, Likes, etc.

API Servers don't give out information to just anyone

Often you have to register and get access through an API Key
This key should then be paired with your request so that the server knows it's you

41 / 51

Some Examples
Some interesting / frequently used API servers are linked to below:
Twitter
Spotify
Rechtspraak (and here)
Youtube
KNMI (Dutch Metereological Institute)

We will continue with an example from the Dutch judicial system, Rechtspraak, but you
might want to find it interesting to try out one of the others as well.

42 / 51

https://developer.twitter.com/en/docs/twitter-api
https://developer.spotify.com/documentation/web-api/
https://www.rechtspraak.nl/Uitspraken/Paginas/Open-Data.aspx
https://openrechtspraak.nl/api_docs
https://developers.google.com/youtube/v3/getting-started
https://developer.dataplatform.knmi.nl/get-started

Example: Retrieving Data from the Dutch
Judicial System

43 / 51

API Keys
Fortunately, in this case, the API is free and open to the public.
In other cases, you may need to register.

Usually, in this case, after registering, you have to provide servers with an API key, which
is like a password. This key is user-specific and should be kept secret.

You can use this key to contact the server. The server then knows an authenticated
user is submitting a particular request to obtain data.

You need to read the documentation to find out how to send requests for the specific
data that you want.

44 / 51

Extracting Data
You have to read the documentation to find out the precise logic of the request you
want to make

Usually, they way you have to deal with API's is described on the website or in other
documentation

Especially for R and Python users

The logic generally revolves around sending requests in a certain way

Then, after we submit a request, we get a reponse in the form of a .xml datafile.

For which we load the XML package, which converts XML to R-objects
We also load the httr package, which allows us to make requests from R to an
API server

library(httr)
library(XML)

45 / 51

Extracting Data
Define the parameters for the search:

params <- list(max=1000,
 creator="http://standaarden.overheid.nl/owms/terms/Rechtbank_Utrech
 type="uitspraak",
 c(date = "1995-01-01T12:00:00",
 date = "2000-01-01T12:00:00")
)

Send the request to the API server and receive a response:

url_handle <- 'https://data.rechtspraak.nl/uitspraken/zoeken?'

response <- httr::GET(url=url_handle,
 query= params)

46 / 51

Inspecting Response
We can now see what's inside after extracting the data, and converting the XML format
to a data.frame
In the next lecture(s), we continue with this dataset and see how we can process the
text proceedings of the court cases

obj <- httr::content(response, as="text")
text <- XML::xmlParse(obj)
df <- XML::xmlToDataFrame(text)

47 / 51

Inspecting Response
df |>
 as_tibble() |>
 head(10)

A tibble: 10 × 6
text id title
<chr> <chr> <chr>
1 Rechtspraak Open Data (Uitspraken) <NA> <NA>
2 Aantal gevonden ECLI's: 59858 <NA> <NA>
3 uuid:51e960a8-c9f2-4085-88f5-7baf6d78c342;id=512 <NA> <NA>
4 Copyright 2024 Rechtspraak. <NA> <NA>
5 2024-02-21T11:26:30+01:00 <NA> <NA>
6 <NA> ECLI:NL:RBUTR:1999:AA3478 ECLI:N
7 <NA> ECLI:NL:RBUTR:1999:AA3625 ECLI:N
8 <NA> ECLI:NL:RBUTR:1999:AA3725 ECLI:N
9 <NA> ECLI:NL:RBUTR:1999:AA3730 ECLI:N
10 <NA> ECLI:NL:RBUTR:1999:AA3732 ECLI:N

48 / 51

Recapitulation

49 / 51

Recapitulation
We have seen how to get data in a number of ways

Using special data packages, using the web and search engines, using SQL servers.

We have also seen an example of how to retrieve Tweets and meta information using
an API server

This information could potentially be used to answer research questions
But keep in mind that sometimes, some of the options are paid

50 / 51

Recapitulation
In general, there are many types of requests you can make using API Servers

You should always read the documentation: each API server can work differently

In particular, you want to know:

In what file format the API returns information
The correct syntax for making a request
The parameters that you can provide to make a refined request

There are also other ways in which we can extract data.

For example, some of the things we haven't done are extracting data from
pictures or from pdf documents

51 / 51

