
Introduction to Applied Data Science
Lecture 4: Getting Data, Web Scraping

Bas Machielsen
Utrecht University
2024-04-22

Web Scraping

2 / 40

Lecture 4: Web Scraping
Overview of this class:

Lecture 1: Introduction to Data Science & R
Lecture 2: Introduction to Programming
Lecture 3: Getting Data, API & Databases
This lecture: Lecture 4: Getting Data, Web Scraping
Lecture 5: Transforming and Cleaning Data
Lecture 6: Spatial and Network Data
Lecture 7: Text Data & Text Mining
Lecture 8: Data Science Project

3 / 40

Introduction: What is Web Scraping?
Web scraping is the process of extracting data from websites

It involves fetching HTML content from web pages and then parsing and extracting the
desired information

R provides powerful libraries and tools for web scraping

It allows us to automate data collection tasks, and extract structured data from
unstructured sources

The most important ingredient is the rvest package

library(pacman)
p_load(rvest)

4 / 40

Step By Step
Step by step, web scraping involves:

Fetch HTML: Download the HTML content of the web page.

Parse HTML: Parse the HTML content to extract the relevant elements.

Extract Data: Use CSS selectors to locate and extract the desired data.

Process Data: Process and clean the extracted data as needed.

Analyze Data: Analyze the extracted data using R's data manipulation and
visualization tools. Strictly speaking, not part of the web scraping process per se.

5 / 40

HTML Code
To do web scraping, you need to know some basic HTML.

HTML stands for “Hyper Text Markup Language”.

HTML page consists of series of elements which browsers use to interpret how to
display the content.

HTML tags are names of the elements surrounded by angle brackets like so: <tagname>
content goes here... </tagname> .

Most HTML tags come in pairs and consist of opening and a closing tag, known as start
tag and end tag, where the end tag name is preceded by the forward slash / .

6 / 40

HTML Structure
Below is a visualization of a simple HTML page structure:

Pretty much all webpages look like this, but there are exceptions

7 / 40

Elements
Elements are the basic building blocks of HTML code

There are over 100 HTML elements:

Every HTML page must be must be in an <html> element, and it must have two
children: <head> , which contains document metadata like the page title, and <body> ,
which contains the content you see in the browser.

Block tags like <h1> (heading 1), <p> (paragraph), <div> (division), (ordered
list) or (list) form the overall structure of the page.

Inline tags like (bold), <i> (italics), and <a> (links) formats text inside block
tags.

If you encounter a tag that you’ve never seen before, you can find out what it does
with a little googling.

8 / 40

Example HTML Page
Roughly, then, a basic website might look something like this:

<html>
 <head>
 Page Title
 </head>
 <body>
 <p>First Paragraph</p>
 <div>Second Paragraph</div>

 Coffee
 Tea
 Milk

 </body>
</html>

9 / 40

Attributes and Classes
It is possible to write slightly more complicated HTML code

Usually, people define HTML attributes inside HTML tags.

These attributes provide additional information about HTML elements, such as
hyperlinks for text, and width and height for images.

Attributes are always defined in the start tag and come in name="value" pairs, like so:
This is a link

Here href is the attribute (name) and it's value is "https://www.example.com"

HTML tags often also have classes

We'll see examples of attributes and classes shortly

The bottom line of web scraping is that we can use these attributes and classes later
to find the piece of HTML code we need to extract data

10 / 40

More Complicated Example of an HTML
Page

What are the elements, attributes and classes in this HTML code?

<html>
 <head>
 <title>My First HTML Page</title>
 </head>
 <body>
 <h1>Hello, HTML!</h1>
 <p href="http://www.hello.com">This is a paragraph of text.</p>
 <div class="paragraph">This is also some enclosed text.</div>
 An Image
 </body>
</html>

11 / 40

CSS Selectors

12 / 40

CSS Selectors
The second major ingredient we need for web scraping is an understanding of CSS
Selectors

CSS is a language that describes how HTML elements should be displayed.

One of the ways to define useful shortcuts for selecting HTML elements to style is by
using CSS selectors.

CSS selectors represent patterns for locating HTML elements.

This is what we use to find particular attributes in a HTML page, and extract them or
their text into R

We will shortly see some examples of CSS selectors

13 / 40

CSS Selector Logic
We have seen that CSS selectors are patterns used to select elements in an HTML
document.

They are commonly used in web scraping to specify which elements to extract.

Simple selectors include element selectors, class selectors, and ID selectors.

Element Selector: Selects all elements of a specified type. Example: p selects all
paragraph elements.

Class Selector: Selects elements with a specific class attribute. Example: .class
selects all elements with the class "class".

ID selector: Selects an element with a specific attribute. For example: #id selects the
element with the ID "id".

14 / 40

More CSS Selector Attributes
A very important and often-used selector is the attribute selector

The Attribute Selector ([attribute=value]) selects elements with a specific attribute-
value pair.

Example: [href="https://example.com"] selects all elements in the page with
the href attribute equal to "https://example.com".

Other Example: in the below code, the CSS Selector [href="http://www.hello.com"]
would return the line: <p href="http://www.hello.com">This is a paragraph of
text.</p>

<html>
 <head>
 <title>My First HTML Page</title>
 </head>
 <body>
 <h1>Hello, HTML!</h1>
 <p href="http://www.hello.com">This is a paragraph of text.</p>
 An Image
 </body>
</html> 15 / 40

https://example.com/

More CSS Selector Attributes
There also exists a Partial Match Attribute Selector ([attribute*="value"]): this
selects elements with an attribute value containing the specified substring.

Example: [href*="example"] selects all elements with the href attribute
containing "example".

You can also select by text in various ways:

Use the :contains() selector to select elements containing exact text. For
example: p:contains('Lorem ipsum') selects all <p> elements containing the
exact text "Lorem ipsum".
It is possible to do this case-insensitively: e.g. p:contains('lorem ipsum' i)
selects all <p> elements containing the text "lorem ipsum" regardless of case.
You can use the ^ symbol to select elements where the text starts with a specific
string. E.g. a[href^="https://"] selects all <a> elements whose href attribute
starts with " https:// ".
You can use the $ symbol to select elements where the text ends with a specific
string. Example: a[href$=".pdf"] selects all <a> elements whose href attribute
ends with ".pdf".

16 / 40

More Complicated CSS Selectors
CSS selectors can also specify relationships between elements.

Common relationships include parent-child (>) and descendant () selectors.

A parent-child selector selects all elements that are direct children of a
element. Example: ul > li

A descendant selector selects all elements that are descendants of a
element, regardless of their depth. Example: ul li

An Adjacent Sibling Selector (+) selects the element that is immediately preceded by a
specified sibling element. Example: h2 + p selects all <p> elements that are
immediately preceded by an <h2> element.

A General Sibling Selector (~) selects all sibling elements that follow a specified
element. Example: h2 ~ p selects all <p> elements that follow an <h2> element at
the same level in the tree, regardless of their position.

17 / 40

CSS Selectors Cheat sheet
On a complicated web page, it is sometimes difficult to find the code for a good CSS
selector

Potentially, you could use the automatized CSS selector in the Inspect window in
your browser, which automatically generates CSS
Right Click the Web Page > Click Inspect > Select the Element > Right-Click > Copy
> CSS Selector
This is often not robust, meaning that it does not find the element after the
website owner makes some changes, but leaves the stuff you are looking for on it

Here and here are CSS cheat sheets that help you find the right selector.

But in general, the best way to get used to web scraping is by looking at real-life
examples.

18 / 40

https://www.freecodecamp.org/news/css-selectors-cheat-sheet/
https://welcm.uk/downloads/CSS-Selectors-Cheatsheet.pdf

Web Scraping in R
All of this is fairly abstract, but it turns out this is easy to implement in R:

To get started scraping, you’ll need the URL of the page you want to scrape, which you
can usually copy from your web browser:

library(rvest)
html <- read_html("http://www.uu.nl/")
html

{html_document}
<html lang="nl" dir="ltr" prefix="og: https://ogp.me/ns#">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">\n<li
[2] <body class="full-width"> <noscript><iframe src="https://www.googletagmanager.co

19 / 40

Using CSS Selectors
Let's use some of the selectors we've learned, for example the element selector for
<p> :

html |>
 html_elements('p') # Inside this function, you use the CSS Selector

{xml_nodeset (6)}
[1] <p> Onderzoeker Joeri Zwerts en collega’s concluderen dit aan de hand van 1,3 mi
[2] <p>Luister op 31 mei naar lezingen, muziek, film, comedy, poëzie en een lijsttre
[3] <p>Een verdiepend artikel over de stijgende zeespiegel en hoe we het tij kunnen
[4] <p>Niki Frantzeskaki wordt de nieuwe wetenschappelijk directeur van het strategi
[5] <p>Hoogleraar Ingrid Robeyns maakt zich al jaren hard voor het limitarisme: <q>N
[6] <p>Universiteit Utrecht
Heidelberglaan 8
3584 CS Utrecht
Nederland
T

20 / 40

Using CSS Selectors
Let's also use a class selector, marked by a . . In this example, we'll look for all
elements with the class grid__item :

html |>
 html_elements('.grid__item')

{xml_nodeset (9)}
[1] <div class="grid__item"><div class="image"> <img loading="lazy" src="/sites/defa
[2] <div class="grid__item"><div class="home-header__main">\n<h2 class="home-header__
[3] <div class="grid__item"><div class="link-lists-item">\n<div class="link-lists-it
[4] <div class="grid__item"><div class="link-lists-item">\n<div class="link-lists-it
[5] <div class="grid__item"><div class="link-lists-item">\n<div class="link-lists-it
[6] <li class="grid__item"><div id="paragraph-169621" class="people-item js-no-exter
[7] <li class="grid__item"><div id="paragraph-169607" class="people-item js-no-exter
[8] <li class="grid__item"><div id="paragraph-186547" class="people-item js-no-exter
[9] <li class="grid__item"><div id="paragraph-169620" class="people-item js-no-exter

21 / 40

Extracting Text And Attributes
After having read in the HTML page and having found the correct elements to scrape, it
is often a question of just extracting a particular text or a particular attribute:

Text using the html_text2() function

html |>
 html_elements('.grid__item') |>
 html_text2() |>
 head(3)

[1] ""
[2] "FSC-certificering vergroot biodiversiteit tropische bossen\n\nOnderzoeker Joeri
[3] "Veelgezocht\nUniversiteitsbibliotheek\nBotanische Tuinen\nVacatures\nPromoveren

22 / 40

Extracting Text And Attributes
Attributes using the html_attr() function:

html |>
 html_elements('a.people-item__link') |>
 html_attr('href')

[1] "/organisatie/festival-europa"
[2] "/organisatie/verdieping/boven-het-water-uitstijgen"
[3] "/nieuws/niki-frantzeskaki-benoemd-tot-nieuwe-wetenschappelijk-directeur-van-pat
[4] "/in-de-media/wat-is-het-limitarisme-hoogleraar-ingrid-robeyns-legt-het-uit"

23 / 40

Summarizing
You can web scrape with only three functions:

read_html() for reading in the HTML code of a particular web page
html_elements() using CSS selectors to isolate the relevant pieces you want to
scrape
html_text2() or html_attr() to extract the data you might be looking for

24 / 40

Tables
If you’re lucky, your data will be already stored in an HTML table, and it’ll be a matter
of just reading it from that table using the read_table() function:

read_html('https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)') |>
 html_table() |>
 pluck(2)

A tibble: 230 × 8
`Country (or territory)` `UN region` `IMF[1][5]` `IMF[1][5]` `World Bank[6]` `Wor
<chr> <chr> <chr> <chr> <chr> <chr
1 Country (or territory) UN region Forecast Year Estimate Year
2 World — 185,677,122 2024 164,155,327 2022
3 China Asia 35,291,015 [n 1]2024 30,327,320 [n 2
4 United States Americas 28,781,083 2024 25,462,700 2022
5 India Asia 14,594,460 2024 11,874,583 2022
6 Japan Asia 6,720,962 2024 5,702,287 2022
7 Germany Europe 5,686,531 2024 5,309,606 2022
8 Russia Europe 5,472,880 2024 5,326,855 2022
9 Indonesia Asia 4,720,542 2024 4,036,901 2022
10 Brazil Americas 4,273,668 2024 3,837,261 2022
ℹ 220 more rows

25 / 40

Example: Scraping Lower House
Members

26 / 40

Example: Lower House Data
Have a look at this webpage (Source)

27 / 40

https://www.tweedekamer.nl/kamerleden_en_commissies/alle_kamerleden

Webscraping Lower House Data
After visiting the website and inspecting the HTML code (right click > inspect), we found
that:

Each Lower House member is located in a <div> of class m-card__content :

CSS selector: div.m-card__content

Inside this <div> , the name is located in a <h3> and the political party is located in a

The latter has class u-text-size--small . The selector being span.u-
text-size--small .

The remaining data is stored inside a <table> object

On the next slide, we will extract these data on the basis of these selectors and
rearrange them, for each politician on the page

28 / 40

Scraping Code
This is the code:

library(rvest, quietly = TRUE); library(tidyverse)

Scrape the webpage
url <- "https://www.tweedekamer.nl/kamerleden_en_commissies/alle_kamerleden"
webpage <- read_html(url)
Extract all the tables containing the data pieces
table <- html_elements(webpage, "div.m-card__content")
Extract the data from each member separately
data <- lapply(table, function(x) {

 name_pol <- html_elements(x, 'h3') |> html_text() |> str_squish()
 party_pol <- html_elements(x, 'span.u-text-size--small') |> html_text()
 table <- html_elements(x, 'table') |> html_table() |> pluck(1)

 rearranged_table <- table |> pivot_wider(names_from=X1,
 values_from=X2)
 rearranged_table |>
 mutate(name=name_pol, party=party_pol)

})

Bind the data together
data <- bind_rows(data) 29 / 40

Inspect the Data
This is what the dataset looks like:

data |> head(10)

A tibble: 10 × 5
Woonplaats Leeftijd Anciënniteit name party
<chr> <chr> <chr> <chr> <chr>
1 Drachten 61 jaar 139 dagen Max Aardema PVV
2 Terheijden 34 jaar 2049 dagen Thierry Aartsen VVD
3 Utrecht 41 jaar 139 dagen Ismail el Abassi DENK
4 's-Gravenhage 47 jaar 6242 dagen Fleur Agema PVV
5 Rotterdam 32 jaar 1119 dagen Stephan van Baarle DENK
6 Eindhoven 38 jaar 139 dagen Mpanzu Bamenga D66
7 Amsterdam 41 jaar 2588 dagen Thierry Baudet FVD
8 Wassenaar 38 jaar 2364 dagen Bente Becker VVD
9 Groningen 41 jaar 2588 dagen Sandra Beckerman SP
10 Gouda 41 jaar 1119 dagen Mirjam Bikker ChristenUnie

30 / 40

Correct Code
In comparison to the incorrect code offered to us by ChatGPT, we changed a couple of
things:

We changed the table object from:

table <- html_nodes(webpage, "table") %>% .[[1]]

to:

table <- html_elements(webpage, "div.m-card__content")

And we changed the function to pick up Woonplaats, Ancienniteit and Leeftijd
more carefully: more about this soon
In all cases, we made use of CSS selectors: we made use of <h3> , , and finally
<table> tags!

31 / 40

Demonstration
Let's first see if we can do something nice with this newly obtained dataset.

library(tmap, quietly = TRUE); library(sf, quietly = TRUE); data("NLD_muni")
freq <- data |> group_by(Woonplaats) |> summarize(count = n())
NLD_muni <- NLD_muni|> left_join(freq, by = c("name" = "Woonplaats"))
NLD_muni |> ggplot() + geom_sf(alpha=0.7,aes(fill=count)) + scale_fill_continuous(

32 / 40

Demonstration
data |>
 group_by(party) |>
 summarize(ma = mean(parse_number(Anciënniteit))) |>
 ggplot(aes(x = party, y = ma)) + geom_col(aes(fill = party)) + theme(axis.text.x

33 / 40

CSS Selectors in the example
If we focus once again on the Dutch Lower House website, right-click with your mouse
and then select Inspect (Q)

A subscreen will pop-up with the html code underlying the website

Your job is then to find the elements you want to scrape, and find the pattern

The first thing you realize is that all the information of one particular politician is
located in a <div> of class m-card__content
Secondly, inside the <div> , there is a <table> containing three of the variables,
which can be easily extracted by focusing on the <table> and then using the
html_table() function in the rvest package
The other two attributes, the name and the party, are extracted using the <h3>
and attributes in which they are located

34 / 40

https://www.tweedekamer.nl/kamerleden_en_commissies/alle_kamerleden

Another Example: Wikipedia

35 / 40

Wikipedia Example
Sometimes, we can also extract elements at once, without having to write a separate
piece of code for each unit we're interested in

The rvest package has the function html_table , allowing us to extract data from a
table into a data.frame at once.

To demonstrate, have a look at a Wikipedia page about football match outcomes:
https://nl.wikipedia.org/wiki/Eredivisie_2023/24_(mannenvoetbal)

We will scrape the table that contains the scores (Dutch: Stand)

36 / 40

https://nl.wikipedia.org/wiki/Eredivisie_2023/24_(mannenvoetbal

Wikipedia Example
The CSS selector in this script says:

Look for the <h3> with the text 'Stand', then look for the next <div> afterward,
and select the <table> inside that <div> .

url <- "https://nl.wikipedia.org/wiki/Eredivisie_2023/24_(mannenvoetbal)"

table <- url |>
 read_html() |>
 html_element(css = 'h3:contains("Stand") + div > table') |>
 html_table()

Note that we made use of the Adjacent Sibling Selector (+) and the Parent-Child
selector (>)

Have a look at the HTML code of the page to see why: there are a lot of tables, and
we only want this one!

37 / 40

Result
The result you get is this:

table |> head(10)

A tibble: 10 × 12
Pos Pw Team Wed W G V Ptn DV DT `+/−` `Kwa
<int> <lgl> <chr> <int> <int> <int> <int> <chr> <int> <int> <chr> <chr
1 1 NA PSV (Q) 30 26 3 1 81 95 17 +78 "Lea
2 2 NA Feyenoord (C, X) 30 22 6 2 72 77 23 +54 "Lea
3 3 NA FC Twente (Y) 30 18 6 6 60 56 30 +26 "Der
4 4 NA AZ (Z) 30 16 7 7 55 59 35 +24 "Tic
5 5 NA Ajax 30 13 9 8 48 63 56 +7 "Twe
6 6 NA N.E.C. 30 12 11 7 47 59 44 +15 "Pla
7 7 NA FC Utrecht 30 12 9 9 45 43 41 +2 "Pla
8 8 NA Go Ahead Eagles 30 11 9 10 42 44 39 +5 "Pla
9 9 NA Sparta Rotterdam 30 11 7 12 40 45 43 +2 "Pla
10 10 NA sc Heerenveen 30 10 6 14 36 50 56 −6 ""

38 / 40

Recapitulation

39 / 40

Recapitulation
Today, we have seen various examples of web scraping, and how to get (usually free)
data from the web

We have also made an attempt to understand how webpages are structured in the
form of HTML code

We found a language that helps us select the relevant elements we are looking for on
a HTML page and dissected its logic

We discussed some functions helping us to extract the relevant data after applying
the first two steps

What have we not done?

Dynamic webpages / Selenium (more advanced)
Other sources of data, e.g. pdf (tabulizer package)

40 / 40

