Introduction to Applied Data Science Lecture 5: Cleaning and Transforming Data

Bas Machielsen Utrecht University 2024-04-22

Lecture 5: Transforming and Cleaning Data

Lecture 5: Transforming and Cleaning

- Overview of this class:
 - Introduction to Data Science
 - Introduction to R & Programming
 - Getting Data: API's and Databases
 - Getting Data: Web Scraping
 - This lecture: Transforming and Cleaning Data
 - Spatial & Network Data
 - Text as Data and Mining
 - Data Science Project

Transforming and Cleaning Data

- Most of the time when you're pursuing a data science research project, you will have to deal with *raw data*
- As a rule, data is untidy, but it also scattered around many places and it takes considerable effort to structure the data
- Remember that our end goal is *tidy data*, that is, data in which each observation corresponds to a *row* and each variable corresponds to a *column*
- We want this because this is the data format that is usually suitable for statistical analysis and visualization
- This lecture will acquaint you with (some of the) arsenal required to take pieces of raw data and tell R to assemble it into a tidy data format

Recap: Tidy Data

- There are three interrelated rules which make a dataset tidy:
 - Each variable must have its own column.
 - Each observation must have its own row.
 - Each value must have its own cell.

palmerpenguins :: penguins ▷ head(8)

```
## # A tibble: 8 × 8
```

##	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
##	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>
## 1	Adelie	Torgersen	39.1	18.7	181	3750	male
## 2	Adelie	Torgersen	39.5	17.4	186	3800	femal
## 3	Adelie	Torgersen	40.3	18	195	3250	femal
## 4	Adelie	Torgersen	NA	NA	NA	NA	<na></na>
## 5	Adelie	Torgersen	36.7	19.3	193	3450	femal
## 6	Adelie	Torgersen	39.3	20.6	190	3650	male
## 7	Adelie	Torgersen	38.9	17.8	181	3625	femal
## 8	Adelie	Torgersen	39.2	19.6	195	4675	male

Data Frames

- The most **fundamental, familiar and intuitive** format of data we have seen so far is the data.frame
- We generally store all of our data in data.frames
- For example, usually, you import something like a .csv file as a data.frame
- A tidy data.frame is composed of **rows** (in tidy data, observations) and **columns** (variables)
- But it is rare that you get the data in exactly the **right form** you need
- One of the most common tasks you will face is to create new variables or summarize the data

Recap: Basic Data Transformation Functions

Data Transformation

- We have already worked with the tidyverse set of packages.
- The tidyverse library in R provides ways to transform your data using these basic 'verbs'.
 - Pick observations by their values (filter()).
 - Reorder the rows (arrange()).
 - Pick variables by their names (select()).
 - Create new variables with functions of existing variables (mutate()).
 - Collapse many values down to a single summary (summarise()).
- These can all be used in conjunction with group_by() which changes the scope of each function from operating on the entire dataset to operating on it group-by-group.

The Pipe Operator

- One of the things specific to R is a *pipe*
- I have used, and referred to it, on multiple occasions already
 - You might come across either %>% or ▷, which are essentially the same
- They are used to express a sequence of multiple operations
- The point of the pipe is to help you write code in a way that is **easier to read and understand**
- You can take the pipe to mean "take the output from the previous line and use it as (one of the) inputs on the next line"

Example Pipe

- The pipe operator |> is a powerful tool in the R programming language that simplifies and enhances the readability of code, especially in data analysis workflows.
- It takes the output from one function and uses it as the first argument of the next function in the chain.
- It enables a more natural, left-to-right style of coding, similar to how we read and interpret information.
- Example (more will follow):

Example without pipe operator
result ← sqrt(mean(c(1, 4, 9, 16)))

Zooming In On Data

Rows (filter and arrange)

• The most important verbs that operate on **rows** of a dataset are filter(), which changes which rows are present without changing their order, and arrange(), which changes the order of the rows without changing which are present.

```
library(palmerpenguins)
penguins ▷
filter(bill_length_mm < 40) ▷
head(3)</pre>
```

```
## # A tibble: 3 × 8
##
     species island
                       bill length mm bill depth mm flipper length mm body mass g sex
     <fct>
             <fct>
                                 <dbl>
                                               <dbl>
                                                                  <int>
                                                                              <int> <fct>
##
## 1 Adelie Torgersen
                                                18.7
                                                                               3750 male
                                  39.1
                                                                    181
## 2 Adelie Torgersen
                                                                               3800 femal
                                 39.5
                                                17.4
                                                                    186
                                                                               3450 femal
## 3 Adelie
             Torgersen
                                  36.7
                                                19.3
                                                                    193
```

Rows (filter and arrange)

• The most important verbs that operate on **rows** of a dataset are <code>filter()</code>, which changes which rows are present without changing their order, and <code>arrange()</code>, which changes the order of the rows without changing which are present.

```
palmerpenguins :: penguins ▷
    arrange(desc(bill_length_mm))
```

```
## # A tibble: 344 × 8
```

##	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
##	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>
##	1 Gentoo	Biscoe	59.6	17	230	6050	male
##	2 Chinstrap	Dream	58	17.8	181	3700	femal
##	3 Gentoo	Biscoe	55.9	17	228	5600	male
##	4 Chinstrap	Dream	55.8	19.8	207	4000	male
##	5 Gentoo	Biscoe	55.1	16	230	5850	male
##	6 Gentoo	Biscoe	54.3	15.7	231	5650	male
##	7 Chinstrap	Dream	54.2	20.8	201	4300	male
##	8 Chinstrap	Dream	53.5	19.9	205	4500	male
##	9 Gentoo	Biscoe	53.4	15.8	219	5500	male
##	10 Chinstrap	Dream	52.8	20	205	4550	male
##	# i 334 more	rows					

Common Mistakes

• When you're starting out with R, the easiest mistake to make is to use = instead of = when testing for equality. filter() will let you know when this happens:

```
penguins ▷
filter(year = 2007)
```

```
## Error in `filter()`:
## ! We detected a named input.
## i This usually means that you've used `=` instead of `=`.
## i Did you mean `year = 2007`?
```

• Another mistake is you writing "or" statements like you would in English:

```
penguins ▷
filter(species = "Adelie" | "Chinstrap")
## Error in `filter()`:
```

```
## Life().
## i In argument: `species = "Adelie" | "Chinstrap"`.
## Caused by error in `species = "Adelie" | "Chinstrap"`:
## ! operations are possible only for numeric, logical or complex types
```

Columns (mutate and select)

- The job of mutate() is to add **new columns** that are calculated from the existing columns.
- And select() allows you to rapidly zoom in on a useful subset using operations
 based on the names of the variables

```
penguins ▷
mutate(body_mass_kg = body_mass_g/1000) ▷
select(species, island, body_mass_kg)
```

```
## # A tibble: 344 × 3
                        body mass kg
     species island
##
     <fct> <fct>
                               <dbl>
##
   1 Adelie Torgersen
                                3.75
##
   2 Adelie Torgersen
                                3.8
##
   3 Adelie Torgersen
                                3.25
##
   4 Adelie Torgersen
                               NΑ
##
   5 Adelie Torgersen
                                3.45
##
   6 Adelie Torgersen
##
                                3.65
   7 Adelie
            Torgersen
                                3.62
##
   8 Adelie
              Torgersen
                                4.68
##
   9 Adelie
              Torgersen
                                3.48
##
  10 Adelie
              Torgersen
                                4.25
##
```

Grouping & Summarizing

• You can use group_by() to divide your dataset into groups meaningful for your analysis:

```
penguins ▷
group_by(species) ▷
head(5)
```

```
## # A tibble: 5 × 8
## # Groups: species [1]
##
    species island
                       bill length mm bill depth mm flipper length mm body mass g sex
    <fct> <fct>
                                <dbl>
                                              <dbl>
                                                                <int>
                                                                             <int> <fct>
##
## 1 Adelie Torgersen
                                 39.1
                                               18.7
                                                                   181
                                                                              3750 male
## 2 Adelie Torgersen
                                                                              3800 femal
                                 39.5
                                               17.4
                                                                   186
## 3 Adelie Torgersen
                                                                              3250 femal
                                 40.3
                                               18
                                                                   195
## 4 Adelie Torgersen
                                 NΑ
                                               NA
                                                                   NA
                                                                                NA < NA >
## 5 Adelie
                                                                              3450 femal
            Torgersen
                                 36.7
                                               19.3
                                                                   193
```

 By itself, group_by() does nothing. However, group_by() is often used together with summarize or mutate, but this means subsequent operations will now work "by species".

Grouping & Summarizing

• The most important grouped operation is a **summary**, which, if being used to calculate a single summary statistic, reduces the data frame to have a single row for each group.

```
penguins ▷
group_by(species) ▷
summarize(name = mean(body_mass_g, na.rm=T))
```

A tibble: 3 × 2
species name
<fct> <dbl>
1 Adelie 3701.
2 Chinstrap 3733.
3 Gentoo 5076.

Grouping & Mutate

• The function group_by() can also be used together with mutate to create a group characteristic:

```
penguins ▷
group_by(species) ▷
mutate(bill_length_depth = bill_length_mm * bill_depth_mm) ▷
select(species, island, body_mass_g, bill_length_depth)
```

##	# /	A tibble:	: 344 × 4		
##	# (Groups:	species	[3]	
##		species	island	body_mass_g	bill_length_depth
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>
##	1	Adelie	Torgersen	3750	731.
##	2	Adelie	Torgersen	3800	687.
##	3	Adelie	Torgersen	3250	725.
##	4	Adelie	Torgersen	NA	NA
##	5	Adelie	Torgersen	3450	708.
##	6	Adelie	Torgersen	3650	810.
##	7	Adelie	Torgersen	3625	692.
##	8	Adelie	Torgersen	4675	768.
##	9	Adelie	Torgersen	3475	617.
##	10	Adelie	Torgersen	4250	848.
##	# i	i 334 mor	e rows		

Merging Data

Merging Datasets

- It's rare that a data analysis involves only a single data frame.
- Typically you have many data frames, and you must **join** them together to answer the questions that you're interested in.
- Joins add new variables to one data frame from matching observations in another.
- With the exception of one join, called anti_join(), which filters observations from one data frame based on whether or not they match an observation in another. We will see that in lecture 6.
- This week, we'll be focusing almost exclusively on joins of the first kind.

Keys

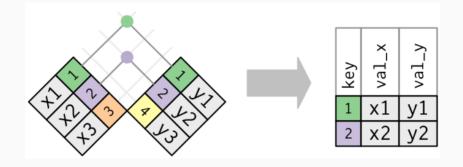
- To understand **joins**, you need to first understand how two tables can be connected through a pair of **keys**, within each table.
- The variables used to connect each pair of tables are called **keys**. Two datasets you might want to merge look as follows:

```
x ← tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 3, "x3"
)
y ← tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2",
 4, "y3"
)
```

• Note that some values of key aren't present in both datasets

Inner and Full Join

• The simplest type of join is the **inner join**. An inner join matches pairs of observations whenever their keys are equal:

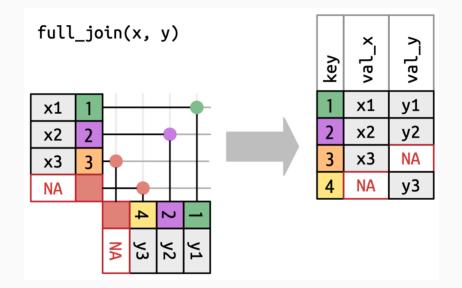


```
inner_join(x, y, by = "key")
```

```
## # A tibble: 2 × 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
```

Inner and Full Join

- Does the inner_join() function represent a filtering join or a mutating join?
- In addition, there is full_join():



Inner and Full Join

• As you can see, a full join keeps all observations in x and y.

full_join(x, y, by = "key")

```
## # A tibble: 4 × 3
## key val_x val_y
## <dbl> <chr> <dbl> <chr> <dbl> 2 2 x2 y2
## 3 3 x3 <NA>
## 4 4 <NA> y3
```

Left and Right Joins

- However, the most common situation is that you have one particular data.frame to which you want to **merge information** from another data.frame
- To this end, the functions left_join() and right_join() can be used. They are symmetrical functions, as you'll see shortly
- left_join() proceeds on the basis of the "left" data.frame, the data.frame that is specified as the *first* argument to the left_join() function
- It then merges the observations from the right data.frame (the second argument of the function) to the left data.frame in so far as these have a match in the left data.frame:

left_join(x,y)

```
## # A tibble: 3 × 3
## key val_x val_y
## <dbl> <chr> <dbl> <chr> <chr> ## 1 1 x1 y1
## 2 2 x2 y2
## 3 3 x3 <NA>
```

Right Join

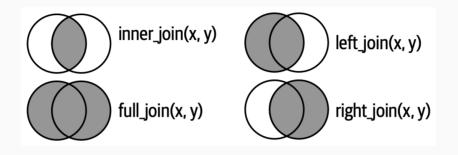
• The function right_join() works in exactly the same way:

right_join(x, y)

A tibble: 3 × 3
key val_x val_y
<dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 4 <NA> y3

Types of Joins

• The following figure depicts the kinds of joins you can do precisely:



- It also occurs often that you want to join data.frame s on the basis of more than one key
 - \circ For example, if you have two datasets of firms (key 1) accounting information in year t (key 2)
 - Then, the key consists of a firm name and a year in the first dataset, and a firm name and a year in the second dataset
- Here is a second example. Suppose you want to merge a dataset of a country's electricity output in a particular year to a dataset of a country's GDP per capita in that same year:

```
library(wbstats)
electricity ← wb_data("4.1.1_TOTAL.ELECTRICITY.OUTPUT") ▷
select(country, date, contains('4.1.1'))
```

electricity \triangleright head(5)

##	#	A tibble	e:5×	3
##		country	date	`4.1.1_TOTAL.ELECTRICITY.OUTPUT`
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	Aruba	1990	338
##	2	Aruba	1991	339
##	3	Aruba	1992	341
##	4	Aruba	1993	531
##	5	Aruba	1994	564

• As you can see, an observation in this data.frame is uniquely identified by a combination of country and date:

```
gdp ← wb_data("NY.GDP.PCAP.KD") ▷
  select(country, date, contains("NY."))
gdp
```

##	# A	A tibble	: 13,888 ×	3
##		country	date NY.	GDP.PCAP.KD
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	Aruba	1960	NA
##	2	Aruba	1961	NA
##	3	Aruba	1962	NA
##	4	Aruba	1963	NA
##	5	Aruba	1964	NA
##	6	Aruba	1965	NA
##	7	Aruba	1966	NA
##	8	Aruba	1967	NA
##	9	Aruba	1968	NA
##	10	Aruba	1969	NA
##	# i	13,878	more rows	

Merging With More Keys

- All of the _join() functions can also **accommodate merging** on the basis of more than one key
- If the keys in the datasets have the same name, you do not have to specify any other arguments in the function

```
left_join(gdp, electricity) ▷
  drop_na()
```

##	# /	A tibble	: 4,806	× 4	
##		country	date	NY.GDP.PCAP.KD	`4.1.1_TOTAL.ELECTRICITY.OUTPUT`
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Aruba	1990	25411.	338
##	2	Aruba	1991	26565.	339
##	3	Aruba	1992	27194.	341
##	4	Aruba	1993	28307.	531
##	5	Aruba	1994	29666.	564
##	6	Aruba	1995	29498.	616
##	7	Aruba	1996	28958.	642
##	8	Aruba	1997	30074.	675
##	9	Aruba	1998	29766.	730
##	10	Aruba	1999	29263.	738.
##	# i	4,796 r	nore rov	VS	

- However, sometimes, variables have **different names** in **different datasets**.
- In this situation, you can use the by argument inside the _join() functions. This also works when variables do have the same name

32 / 45

• The syntax is by=c('key1_in_df1' = 'key1_in_df2', 'key2_in_df1' =
 'key2_in_df2'):

```
## # A tibble: 5.886 × 4
      country date NY.GDP.PCAP.KD `4.1.1 TOTAL.ELECTRICITY.OUTPUT`
##
   <chr>
              <dbl>
                              <dbl>
                                                                 <dbl>
##
##
    1 Aruba
              1990
                             25411.
                                                                  338
##
   2 Aruba
             1991
                             26565.
                                                                  339
   3 Aruba
             1992
                             27194.
                                                                  341
##
##
    4 Aruba
               1993
                             28307.
                                                                  531
##
    5 Aruba
               1994
                             29666.
                                                                  564
    6 Aruba
               1995
                             29498.
                                                                  616
##
##
   7 Aruba
               1996
                             28958.
                                                                  642
   8 Aruba
                             30074.
                                                                  675
##
               1997
    9 Aruba
               1998
                             29766.
                                                                  730
##
  10 Aruba
               1999
                             29263.
                                                                  738.
##
```

: 5 876 more rows

- It also frequently happens that you have two data.frame s with keys that should be the same, but aren't.
- For example, you might have one data.frame with an observation "Netherlands", and another with an observation "The Netherlands"
- Since these observations do not match exactly, the _join() family of functions cannot handle this well
- In this case, we might need the fuzzyjoin library, and join two data.frames on the basis of string distance: a **string distance** is some kind of measure encapsulating how far away to strings are by looking at **commonalities** between two strings.

• The relevant family of functions from the fuzzyjoin package is stringdist_*_join, for example, stringdist_left_join. It is best to illustrate this with an example. Let me scrape two tables from Wikipedia:

```
library(fuzzyjoin); library(rvest); library(janitor)
table_gdp_ppp ← read_html('https://en.wikipedia.org/wiki/List_of_countries_by_GDP
html_element('table.wikitable') ▷
html_table() ▷
row_to_names(1) ▷
clean_names()
```

```
table_gdp_ppp ▷ head(5)
```

```
## # A tibble: 5 × 8
```

##	<pre>country_or_territory</pre>	un_region	forecast	year	estimate	year_2	estimat
##	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
## 1	World	_	185,677,122	2024	164,155,327	2022	127 , 800
## 2	China	Asia	35,291,015	[n 1]2024	30,327,320	[n 2]2022	23,009,
## 3	United States	Americas	28,781,083	2024	25,462,700	2022	19,846,
## 4	India	Asia	14,594,460	2024	11,874,583	2022	8,443,3
## 5	Japan	Asia	6,720,962	2024	5,702,287	2022	5,224,8

```
table_electricity ← read_html("https://en.wikipedia.org/wiki/List_of_countries_by
html_table() ▷
pluck(1) ▷
row_to_names(row_number = 1) ▷
clean_names()
```

```
table_electricity \triangleright head(5)
```

## # A tił	ble: 5 ×	11									
## locat	ion	total_t_wh	coal	gas	hydro	nuclear	wind	solar	oil	bio	geo
## <chr;< td=""><td></td><td><chr></chr></td><td><chr></chr></td><td><chr></chr></td><td><chr></chr></td><td><chr></chr></td><td><chr></chr></td><td><chr></chr></td><td><chr></chr></td><td><chr></chr></td><td><chr></chr></td></chr;<>		<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>						
## 1 World		28,003	10,095	6,399	4,246	2,750	1,848	1 , 047	868	657	93
## 2 China		8,534	5,329	287	1,300	408	656	327	62	166	0
## 3 Unite	d States	4,154	898	1,579	246	780	378	164	35	54	18
## 4 India		1,715	1,274	60	160	44	68	68	3	37	0
## 5 Russ:	а	1,110	169	485	215	222	4	2	12	0.8	0.4

• As you can see, both table_gdp_ppp and table_electricity contain country names

• In country_or_territory and location respectively

- However, country names might be spelled differently, e.g. Netherlands vs. The Netherlands
 - They might still contain commonalities: "The Netherlands" and "Netherlands" have everthing in common except "The"
 - It turns out you can calculate *string distances* that quantify the differences between strings
 - Then, we can use these distances to match observations given strings in two datasets

• Let's left_join table_gdp_ppp to table_electricity on the basis of fuzzy string matching:

```
matched_df \triangleright head(5)
```

```
## # A tibble: 5 × 19
                country or territory un region forecast year estimate year 2 estimate 2 year 3 lo
##
##
                    <chr>
                                                                                                               <chr>
                                                                                                                                                         <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr< <chr> <chr> <chr> <chr< <
                                                                                                                                                                                                                                                                                                                                             <chr>
                                                                                                                                                                                                                                                                                                                                                                        < 0
                                                                                                                                                        185,677... 2024 164,155... 2022 127,800,0... 2017
## 1 World
                                                                                                                                                                                                                                                                                                                                                                            Wc
                                                                                                               _
                                                                                                              Asia 35,291,... [n 1... 30,327,... [n 2]... 23,009,780 [n 1]... Ch
## 2 China
## 3 United States
                                                                                                             Americas 28,781,... 2024 25,462,... 2022 19,846,720 2020
                                                                                                                                                                                                                                                                                                                                                                           Un
                                                                                                                                    14,594,... 2024 11,874,... 2022 8,443,360 2020
## 4 India
                                                                                                              Asia
                                                                                                                                                                                                                                                                                                                                                                            Ιn
## 5 Japan
                                                                                                              Asia 6,720,9... 2024 5,702,2... 2022 5,224,850 2019
                                                                                                                                                                                                                                                                                                                                                                             Ja
## # i 5 more variables: wind <chr>, solar <chr>, oil <chr>, bio <chr>, geo <chr>
```

Pivoting Data Sets

Pivoting

table4a

- A dataset can also be in the wrong shape, or contain all the information you need, but not according to the principles of tidy data
 - For example, take a look at this dataset about tuberculosis cases:

Pivoting

- This data is not tidy, as two *variables* (year, and cases) are jointly stored in several columns instead of as one variable, one column
 - We want a dataset that contains the columns country, year, and tb_cases
- The first step is always to figure out what the **variables and observations** should be
- The second step is to resolve one of two common problems:
 - One variable might be spread across multiple columns
 - One observation might be scattered across multiple rows.
- **Pivoting** is the way in which you **reshape** datasets from such a format to a tidy format and the other way around
 - There exists two kind of pivots: from **wide** to **long** and from **long** to **wide**
 - Which do we have to use now?

Pivot Longer

- pivot_longer takes three arguments:
 - the columns whose names are values, not variables. In this example, those are the columns with the years in it
 - the name of the variable to which we want to move the columns' **names**
 - the name of the variable to which we want to move the columns' value

```
table4a ▷
pivot_longer(cols = where(is.double),
names_to = 'year',
values to = 'tc cases')
```

```
## # A tibble: 6 × 3
    country year
##
                     tc cases
                         <dbl>
##
    <chr>
          <chr>
  1 Afghanistan 1999
                           745
##
## 2 Afghanistan 2000
                          2666
## 3 Brazil
                1999
                         37737
## 4 Brazil
                2000
                      80488
## 5 China
                        212258
                1999
## 6 China
                2000
                        213766
```

Pivot Wider

• pivot_wider() is the opposite of pivot_longer(). You use it when an observation is
 scattered across multiple rows:

table2 ▷ head(6)

##	#	A tibble: 6	× 4		
##		country	year	type	count
##		<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
##	1	Afghanistan	1999	cases	745
##	2	Afghanistan	1999	population	19987071
##	3	Afghanistan	2000	cases	2666
##	4	Afghanistan	2000	population	20595360
##	5	Brazil	1999	cases	37737
##	6	Brazil	1999	population	172006362

Parameters of Pivot Wider

- This time, however, we only need two parameters:
 - The column to take variable names from. Here, it's type
 - The column to take values from. Here it's count

```
table2 ▷
  pivot_wider(names_from = type,
      values_from = count)
```

## #	A tibble: 6	× 4		
##	country	year	cases	population
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	Afghanistan	1999	745	19987071
## 2	Afghanistan	2000	2666	20595360
## 3	Brazil	1999	37737	172006362
## 4	Brazil	2000	80488	174504898
## 5	China	1999	212258	1272915272
## 6	China	2000	213766	1280428583

Recapitulation

Recapitulation

- In this lecture, we went over some **important features/operations** used to zoom in on, and clean data
- We also learned to use some of these functions in the context of **grouped data**
- We extensively focused on merging data:
 - We learned the standard merging logic of _join()
 - We learned several alternatives in case you do not have key variables
- We learned how to **reshape data** into a tidy format