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Lecture 5: Transforming and Cleaning
Data

Overview of this class:

Introduction to Data Science
Introduction to R & Programming
Getting Data: API’s and Databases
Getting Data: Web Scraping
This lecture: Transforming and Cleaning Data
Spatial & Network Data
Text as Data and Mining
Data Science Project
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Transforming and Cleaning Data
Most of the time when you're pursuing a data science research project, you will have to
deal with raw data

As a rule, data is untidy, but it also scattered around many places and it takes
considerable effort to structure the data

Remember that our end goal is tidy data, that is, data in which each observation
corresponds to a row and each variable corresponds to a column

We want this because this is the data format that is usually suitable for statistical
analysis and visualization

This lecture will acquaint you with (some of the) arsenal required to take pieces of raw
data and tell R to assemble it into a tidy data format
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Recap: Tidy Data
There are three interrelated rules which make a dataset tidy:

Each variable must have its own column.
Each observation must have its own row.
Each value must have its own cell.

palmerpenguins::penguins |> head(8)

## # A tibble: 8 × 8
##   species island    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex  
##   <fct>   <fct>              <dbl>         <dbl>             <int>       <int> <fct>
## 1 Adelie  Torgersen           39.1          18.7               181        3750 male 
## 2 Adelie  Torgersen           39.5          17.4               186        3800 femal
## 3 Adelie  Torgersen           40.3          18                 195        3250 femal
## 4 Adelie  Torgersen           NA            NA                  NA          NA <NA> 
## 5 Adelie  Torgersen           36.7          19.3               193        3450 femal
## 6 Adelie  Torgersen           39.3          20.6               190        3650 male 
## 7 Adelie  Torgersen           38.9          17.8               181        3625 femal
## 8 Adelie  Torgersen           39.2          19.6               195        4675 male 
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Data Frames
The most fundamental, familiar and intuitive format of data we have seen so far is the
data.frame

We generally store all of our data in data.frame s

For example, usually, you import something like a .csv  file as a data.frame

A tidy data.frame  is composed of rows (in tidy data, observations) and columns
(variables)

But it is rare that you get the data in exactly the right form you need

One of the most common tasks you will face is to create new variables or summarize
the data
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Recap: Basic Data Transformation
Functions
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Data Transformation
We have already worked with the tidyverse  set of packages.

The tidyverse  library in R provides ways to transform your data using these basic
'verbs'.

Pick observations by their values ( filter() ).
Reorder the rows ( arrange() ).
Pick variables by their names ( select() ).
Create new variables with functions of existing variables ( mutate() ).
Collapse many values down to a single summary ( summarise() ).

These can all be used in conjunction with group_by()  which changes the scope of
each function from operating on the entire dataset to operating on it group-by-group.
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The Pipe Operator
One of the things specific to R is a pipe

I have used, and referred to it, on multiple occasions already

You might come across either %>%  or |> , which are essentially the same

They are used to express a sequence of multiple operations

The point of the pipe is to help you write code in a way that is easier to read and
understand

You can take the pipe to mean "take the output from the previous line and use it as
(one of the) inputs on the next line"
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# Example without pipe operator
result <- sqrt(mean(c(1, 4, 9, 16)))

# Example with pipe operator
result <- c(1, 4, 9, 16) |>
            mean() |>
            sqrt()

Example Pipe
The pipe operator |> is a powerful tool in the R programming language that simplifies
and enhances the readability of code, especially in data analysis workflows.

It takes the output from one function and uses it as the first argument of the next
function in the chain.

It enables a more natural, left-to-right style of coding, similar to how we read and
interpret information.
Example (more will follow):
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Zooming In On Data
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Rows (filter  and arrange )
The most important verbs that operate on rows of a dataset are filter() , which
changes which rows are present without changing their order, and arrange() , which
changes the order of the rows without changing which are present.

library(palmerpenguins)
penguins |>
  filter(bill_length_mm < 40) |>
  head(3)

## # A tibble: 3 × 8
##   species island    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex  
##   <fct>   <fct>              <dbl>         <dbl>             <int>       <int> <fct>
## 1 Adelie  Torgersen           39.1          18.7               181        3750 male 
## 2 Adelie  Torgersen           39.5          17.4               186        3800 femal
## 3 Adelie  Torgersen           36.7          19.3               193        3450 femal
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Rows (filter  and arrange )
The most important verbs that operate on rows of a dataset are filter() , which
changes which rows are present without changing their order, and arrange() , which
changes the order of the rows without changing which are present.

palmerpenguins::penguins |>
  arrange(desc(bill_length_mm))

## # A tibble: 344 × 8
##    species   island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex  
##    <fct>     <fct>           <dbl>         <dbl>             <int>       <int> <fct>
##  1 Gentoo    Biscoe           59.6          17                 230        6050 male 
##  2 Chinstrap Dream            58            17.8               181        3700 femal
##  3 Gentoo    Biscoe           55.9          17                 228        5600 male 
##  4 Chinstrap Dream            55.8          19.8               207        4000 male 
##  5 Gentoo    Biscoe           55.1          16                 230        5850 male 
##  6 Gentoo    Biscoe           54.3          15.7               231        5650 male 
##  7 Chinstrap Dream            54.2          20.8               201        4300 male 
##  8 Chinstrap Dream            53.5          19.9               205        4500 male 
##  9 Gentoo    Biscoe           53.4          15.8               219        5500 male 
## 10 Chinstrap Dream            52.8          20                 205        4550 male 
## # ℹ 334 more rows
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Common Mistakes
When you’re starting out with R, the easiest mistake to make is to use =  instead of ==
when testing for equality. filter()  will let you know when this happens:

penguins |> 
  filter(year = 2007)

## Error in `filter()`:
## ! We detected a named input.
## ℹ This usually means that you've used `=` instead of `==`.
## ℹ Did you mean `year == 2007`?

Another mistake is you writing “or” statements like you would in English:

penguins |>
  filter(species == "Adelie" | "Chinstrap")

## Error in `filter()`:
## ℹ In argument: `species == "Adelie" | "Chinstrap"`.
## Caused by error in `species == "Adelie" | "Chinstrap"`:
## ! operations are possible only for numeric, logical or complex types
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Columns (mutate  and select )
The job of mutate()  is to add new columns that are calculated from the existing
columns.

And select()  allows you to rapidly zoom in on a useful subset using operations
based on the names of the variables

penguins |>
  mutate(body_mass_kg = body_mass_g/1000) |>
  select(species, island, body_mass_kg)

## # A tibble: 344 × 3
##    species island    body_mass_kg
##    <fct>   <fct>            <dbl>
##  1 Adelie  Torgersen         3.75
##  2 Adelie  Torgersen         3.8 
##  3 Adelie  Torgersen         3.25
##  4 Adelie  Torgersen        NA   
##  5 Adelie  Torgersen         3.45
##  6 Adelie  Torgersen         3.65
##  7 Adelie  Torgersen         3.62
##  8 Adelie  Torgersen         4.68
##  9 Adelie  Torgersen         3.48
## 10 Adelie  Torgersen         4.25
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Grouping & Summarizing
You can use group_by()  to divide your dataset into groups meaningful for your
analysis:

penguins |>
  group_by(species) |>
  head(5)

## # A tibble: 5 × 8
## # Groups:   species [1]
##   species island    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex  
##   <fct>   <fct>              <dbl>         <dbl>             <int>       <int> <fct>
## 1 Adelie  Torgersen           39.1          18.7               181        3750 male 
## 2 Adelie  Torgersen           39.5          17.4               186        3800 femal
## 3 Adelie  Torgersen           40.3          18                 195        3250 femal
## 4 Adelie  Torgersen           NA            NA                  NA          NA <NA> 
## 5 Adelie  Torgersen           36.7          19.3               193        3450 femal

By itself, group_by()  does nothing. However, group_by()  is often used together with
summarize  or mutate , but this means subsequent operations will now work "by
species".

16 / 45



Grouping & Summarizing
The most important grouped operation is a summary, which, if being used to calculate
a single summary statistic, reduces the data frame to have a single row for each group.

penguins |>
  group_by(species) |>
  summarize(name = mean(body_mass_g, na.rm=T))

## # A tibble: 3 × 2
##   species    name
##   <fct>     <dbl>
## 1 Adelie    3701.
## 2 Chinstrap 3733.
## 3 Gentoo    5076.
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Grouping & Mutate
The function group_by()  can also be used together with mutate to create a group
characteristic:

penguins |>
  group_by(species) |>
  mutate(bill_length_depth = bill_length_mm * bill_depth_mm) |>
  select(species, island, body_mass_g, bill_length_depth)

## # A tibble: 344 × 4
## # Groups:   species [3]
##    species island    body_mass_g bill_length_depth
##    <fct>   <fct>           <int>             <dbl>
##  1 Adelie  Torgersen        3750              731.
##  2 Adelie  Torgersen        3800              687.
##  3 Adelie  Torgersen        3250              725.
##  4 Adelie  Torgersen          NA               NA 
##  5 Adelie  Torgersen        3450              708.
##  6 Adelie  Torgersen        3650              810.
##  7 Adelie  Torgersen        3625              692.
##  8 Adelie  Torgersen        4675              768.
##  9 Adelie  Torgersen        3475              617.
## 10 Adelie  Torgersen        4250              848.
## # ℹ 334 more rows 18 / 45



Merging Data
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Merging Datasets
It’s rare that a data analysis involves only a single data frame.

Typically you have many data frames, and you must join them together to answer the
questions that you’re interested in.

Joins add new variables to one data frame from matching observations in another.

With the exception of one join, called anti_join() , which filters observations from one
data frame based on whether or not they match an observation in another. We will see
that in lecture 6.

This week, we'll be focusing almost exclusively on joins of the first kind.
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Keys
To understand joins, you need to first understand how two tables can be connected
through a pair of keys, within each table.
The variables used to connect each pair of tables are called keys. Two datasets you
might want to merge look as follows:

x <- tribble(
  ~key, ~val_x,
     1, "x1",
     2, "x2",
     3, "x3"
)
y <- tribble(
  ~key, ~val_y,
     1, "y1",
     2, "y2",
     4, "y3"
)

Note that some values of key  aren't present in both datasets
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Inner and Full Join
The simplest type of join is the inner join. An inner join matches pairs of observations
whenever their keys are equal:

inner_join(x, y, by = "key")

## # A tibble: 2 × 3
##     key val_x val_y
##   <dbl> <chr> <chr>
## 1     1 x1    y1   
## 2     2 x2    y2
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Inner and Full Join
Does the inner_join()  function represent a filtering join or a mutating join?

In addition, there is full_join() :
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Inner and Full Join
As you can see, a full join keeps all observations in x  and y .

full_join(x, y, by = "key")

## # A tibble: 4 × 3
##     key val_x val_y
##   <dbl> <chr> <chr>
## 1     1 x1    y1   
## 2     2 x2    y2   
## 3     3 x3    <NA> 
## 4     4 <NA>  y3

24 / 45



Left and Right Joins
However, the most common situation is that you have one particular data.frame  to
which you want to merge information from another data.frame

To this end, the functions left_join()  and right_join()  can be used. They are
symmetrical functions, as you'll see shortly

left_join()  proceeds on the basis of the "left" data.frame , the data.frame  that is
specified as the first argument to the left_join()  function

It then merges the observations from the right data.frame  (the second argument of
the function) to the left data.frame  in so far as these have a match in the left
data.frame :

left_join(x,y)

## # A tibble: 3 × 3
##     key val_x val_y
##   <dbl> <chr> <chr>
## 1     1 x1    y1   
## 2     2 x2    y2   
## 3     3 x3    <NA> 25 / 45



Right Join
The function right_join()  works in exactly the same way:

right_join(x, y)

## # A tibble: 3 × 3
##     key val_x val_y
##   <dbl> <chr> <chr>
## 1     1 x1    y1   
## 2     2 x2    y2   
## 3     4 <NA>  y3
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Types of Joins
The following figure depicts the kinds of joins  you can do precisely:
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Specifying Keys
It also occurs often that you want to join data.frame s on the basis of more than one
key

For example, if you have two datasets of firms (key 1) accounting information in
year  (key 2)
Then, the key consists of a firm name and a year in the first dataset, and a firm
name and a year in the second dataset

Here is a second example. Suppose you want to merge a dataset of a country's
electricity output in a particular year to a dataset of a country's GDP per capita in that
same year:

t
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Specifying Keys
library(wbstats)
electricity <- wb_data("4.1.1_TOTAL.ELECTRICITY.OUTPUT") |>
  select(country, date, contains('4.1.1'))

electricity |> head(5)

## # A tibble: 5 × 3
##   country  date `4.1.1_TOTAL.ELECTRICITY.OUTPUT`
##   <chr>   <dbl>                            <dbl>
## 1 Aruba    1990                              338
## 2 Aruba    1991                              339
## 3 Aruba    1992                              341
## 4 Aruba    1993                              531
## 5 Aruba    1994                              564
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Specifying Keys
As you can see, an observation in this data.frame  is uniquely identified by a
combination of country  and date :

gdp <- wb_data("NY.GDP.PCAP.KD") |>
  select(country, date, contains("NY."))
gdp

## # A tibble: 13,888 × 3
##    country  date NY.GDP.PCAP.KD
##    <chr>   <dbl>          <dbl>
##  1 Aruba    1960             NA
##  2 Aruba    1961             NA
##  3 Aruba    1962             NA
##  4 Aruba    1963             NA
##  5 Aruba    1964             NA
##  6 Aruba    1965             NA
##  7 Aruba    1966             NA
##  8 Aruba    1967             NA
##  9 Aruba    1968             NA
## 10 Aruba    1969             NA
## # ℹ 13,878 more rows
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Merging With More Keys
All of the _join()  functions can also accommodate merging on the basis of more
than one key
If the keys in the datasets have the same name, you do not have to specify any other
arguments in the function

left_join(gdp, electricity) |>
  drop_na()

## # A tibble: 4,806 × 4
##    country  date NY.GDP.PCAP.KD `4.1.1_TOTAL.ELECTRICITY.OUTPUT`
##    <chr>   <dbl>          <dbl>                            <dbl>
##  1 Aruba    1990         25411.                             338 
##  2 Aruba    1991         26565.                             339 
##  3 Aruba    1992         27194.                             341 
##  4 Aruba    1993         28307.                             531 
##  5 Aruba    1994         29666.                             564 
##  6 Aruba    1995         29498.                             616 
##  7 Aruba    1996         28958.                             642 
##  8 Aruba    1997         30074.                             675 
##  9 Aruba    1998         29766.                             730 
## 10 Aruba    1999         29263.                             738.
## # ℹ 4,796 more rows 31 / 45



Specifying Keys
However, sometimes, variables have different names in different datasets.
In this situation, you can use the by  argument inside the _join()  functions. This also
works when variables do have the same name
The syntax is by=c('key1_in_df1' = 'key1_in_df2', 'key2_in_df1' =
'key2_in_df2') :

right_join(gdp, electricity,
          by = c('country' = 'country', 'date' = 'date'))

## # A tibble: 5,886 × 4
##    country  date NY.GDP.PCAP.KD `4.1.1_TOTAL.ELECTRICITY.OUTPUT`
##    <chr>   <dbl>          <dbl>                            <dbl>
##  1 Aruba    1990         25411.                             338 
##  2 Aruba    1991         26565.                             339 
##  3 Aruba    1992         27194.                             341 
##  4 Aruba    1993         28307.                             531 
##  5 Aruba    1994         29666.                             564 
##  6 Aruba    1995         29498.                             616 
##  7 Aruba    1996         28958.                             642 
##  8 Aruba    1997         30074.                             675 
##  9 Aruba    1998         29766.                             730 
## 10 Aruba    1999         29263.                             738.
# # ℹ 5 876 more rows
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Joining With Inexact Keys
It also frequently happens that you have two data.frame s with keys that should be
the same, but aren't.
For example, you might have one data.frame  with an observation "Netherlands", and
another with an observation "The Netherlands"
Since these observations do not match exactly, the _join()  family of functions cannot
handle this well
In this case, we might need the fuzzyjoin  library, and join two data.frame s on the
basis of string distance: a string distance is some kind of measure encapsulating how
far away to strings are by looking at commonalities between two strings.
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Joining With Inexact Keys
The relevant family of functions from the fuzzyjoin  package is stringdist_*_join , for
example, stringdist_left_join . It is best to illustrate this with an example. Let me
scrape two tables from Wikipedia:

library(fuzzyjoin); library(rvest); library(janitor)
table_gdp_ppp <- read_html('https://en.wikipedia.org/wiki/List_of_countries_by_GDP
  html_element('table.wikitable') |>
  html_table() |>
  row_to_names(1) |>
  clean_names()

table_gdp_ppp |> head(5)

## # A tibble: 5 × 8
##   country_or_territory un_region forecast    year      estimate    year_2    estimat
##   <chr>                <chr>     <chr>       <chr>     <chr>       <chr>     <chr>  
## 1 World                —         185,677,122 2024      164,155,327 2022      127,800
## 2 China                Asia      35,291,015  [n 1]2024 30,327,320  [n 2]2022 23,009,
## 3 United States        Americas  28,781,083  2024      25,462,700  2022      19,846,
## 4 India                Asia      14,594,460  2024      11,874,583  2022      8,443,3
## 5 Japan                Asia      6,720,962   2024      5,702,287   2022      5,224,8
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Joining With Inexact Keys
table_electricity <- read_html("https://en.wikipedia.org/wiki/List_of_countries_by
  html_table() |>
  pluck(1) |>
  row_to_names(row_number = 1) |>
  clean_names()

table_electricity |> head(5)

## # A tibble: 5 × 11
##   location      total_t_wh coal   gas   hydro nuclear wind  solar oil   bio   geo  
##   <chr>         <chr>      <chr>  <chr> <chr> <chr>   <chr> <chr> <chr> <chr> <chr>
## 1 World         28,003     10,095 6,399 4,246 2,750   1,848 1,047 868   657   93   
## 2 China         8,534      5,329  287   1,300 408     656   327   62    166   0    
## 3 United States 4,154      898    1,579 246   780     378   164   35    54    18   
## 4 India         1,715      1,274  60    160   44      68    68    3     37    0    
## 5 Russia        1,110      169    485   215   222     4     2     12    0.8   0.4
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Joining With Inexact Keys
As you can see, both table_gdp_ppp  and table_electricity  contain country names

In country_or_territory  and location  respectively

However, country names might be spelled differently, e.g. Netherlands vs. The
Netherlands

They might still contain commonalities: "The Netherlands" and "Netherlands" have
everthing in common except "The"
It turns out you can calculate string distances that quantify the differences
between strings
Then, we can use these distances to match observations given strings in two
datasets
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Joining With Inexact Keys
Let's left_join  table_gdp_ppp  to table_electricity  on the basis of fuzzy string
matching:

matched_df <- stringdist_left_join(table_gdp_ppp, table_electricity,
                     by = c('country_or_territory'='location'), 
                     max_dist = 0.5)

matched_df |> head(5)

## # A tibble: 5 × 19
##   country_or_territory un_region forecast year  estimate year_2 estimate_2 year_3 lo
##   <chr>                <chr>     <chr>    <chr> <chr>    <chr>  <chr>      <chr>  <c
## 1 World                —         185,677… 2024  164,155… 2022   127,800,0… 2017   Wo
## 2 China                Asia      35,291,… [n 1… 30,327,… [n 2]… 23,009,780 [n 1]… Ch
## 3 United States        Americas  28,781,… 2024  25,462,… 2022   19,846,720 2020   Un
## 4 India                Asia      14,594,… 2024  11,874,… 2022   8,443,360  2020   In
## 5 Japan                Asia      6,720,9… 2024  5,702,2… 2022   5,224,850  2019   Ja
## # ℹ 5 more variables: wind <chr>, solar <chr>, oil <chr>, bio <chr>, geo <chr>
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Pivoting Data Sets
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Pivoting
A dataset can also be in the wrong shape, or contain all the information you need, but
not according to the principles of tidy data

For example, take a look at this dataset about tuberculosis cases:

table4a

## # A tibble: 3 × 3
##   country     `1999` `2000`
##   <chr>        <dbl>  <dbl>
## 1 Afghanistan    745   2666
## 2 Brazil       37737  80488
## 3 China       212258 213766
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Pivoting
This data is not tidy, as two variables (year, and cases) are jointly stored in several
columns instead of as one variable, one column

We want a dataset that contains the columns country , year , and tb_cases

The first step is always to figure out what the variables and observations should be

The second step is to resolve one of two common problems:

One variable might be spread across multiple columns
One observation might be scattered across multiple rows.

Pivoting is the way in which you reshape datasets from such a format to a tidy format
and the other way around

There exists two kind of pivots: from wide to long and from long to wide
Which do we have to use now?
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Pivot Longer
pivot_longer  takes three arguments:

the columns whose names are values, not variables. In this example, those are the
columns with the years in it
the name of the variable to which we want to move the columns' names
the name of the variable to which we want to move the columns' value

table4a |>
  pivot_longer(cols = where(is.double), 
                             names_to = 'year', 
                             values_to = 'tc_cases')

## # A tibble: 6 × 3
##   country     year  tc_cases
##   <chr>       <chr>    <dbl>
## 1 Afghanistan 1999       745
## 2 Afghanistan 2000      2666
## 3 Brazil      1999     37737
## 4 Brazil      2000     80488
## 5 China       1999    212258
## 6 China       2000    213766
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Pivot Wider
pivot_wider()  is the opposite of pivot_longer().  You use it when an observation is
scattered across multiple rows:

table2 |> head(6)

## # A tibble: 6 × 4
##   country      year type           count
##   <chr>       <dbl> <chr>          <dbl>
## 1 Afghanistan  1999 cases            745
## 2 Afghanistan  1999 population  19987071
## 3 Afghanistan  2000 cases           2666
## 4 Afghanistan  2000 population  20595360
## 5 Brazil       1999 cases          37737
## 6 Brazil       1999 population 172006362
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Parameters of Pivot Wider
This time, however, we only need two parameters:

The column to take variable names from. Here, it’s type
The column to take values from. Here it’s count

table2 |> 
  pivot_wider(names_from = type,
              values_from = count)

## # A tibble: 6 × 4
##   country      year  cases population
##   <chr>       <dbl>  <dbl>      <dbl>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583
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Recapitulation
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Recapitulation
In this lecture, we went over some important features/operations used to zoom in on,
and clean data

We also learned to use some of these functions in the context of grouped data

We extensively focused on merging data:

We learned the standard merging logic of _join()
We learned several alternatives in case you do not have key variables

We learned how to reshape data into a tidy format
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