
Introduction to Applied Data Science
Lecture 5: Cleaning and Transforming Data

Bas Machielsen
Utrecht University
2024-04-22

Lecture 5: Transforming and Cleaning
Data

2 / 45

Lecture 5: Transforming and Cleaning
Data

Overview of this class:

Introduction to Data Science
Introduction to R & Programming
Getting Data: API’s and Databases
Getting Data: Web Scraping
This lecture: Transforming and Cleaning Data
Spatial & Network Data
Text as Data and Mining
Data Science Project

3 / 45

Transforming and Cleaning Data
Most of the time when you're pursuing a data science research project, you will have to
deal with raw data

As a rule, data is untidy, but it also scattered around many places and it takes
considerable effort to structure the data

Remember that our end goal is tidy data, that is, data in which each observation
corresponds to a row and each variable corresponds to a column

We want this because this is the data format that is usually suitable for statistical
analysis and visualization

This lecture will acquaint you with (some of the) arsenal required to take pieces of raw
data and tell R to assemble it into a tidy data format

4 / 45

Recap: Tidy Data
There are three interrelated rules which make a dataset tidy:

Each variable must have its own column.
Each observation must have its own row.
Each value must have its own cell.

palmerpenguins::penguins |> head(8)

A tibble: 8 × 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
<fct> <fct> <dbl> <dbl> <int> <int> <fct>
1 Adelie Torgersen 39.1 18.7 181 3750 male
2 Adelie Torgersen 39.5 17.4 186 3800 femal
3 Adelie Torgersen 40.3 18 195 3250 femal
4 Adelie Torgersen NA NA NA NA <NA>
5 Adelie Torgersen 36.7 19.3 193 3450 femal
6 Adelie Torgersen 39.3 20.6 190 3650 male
7 Adelie Torgersen 38.9 17.8 181 3625 femal
8 Adelie Torgersen 39.2 19.6 195 4675 male

5 / 45

Data Frames
The most fundamental, familiar and intuitive format of data we have seen so far is the
data.frame

We generally store all of our data in data.frame s

For example, usually, you import something like a .csv file as a data.frame

A tidy data.frame is composed of rows (in tidy data, observations) and columns
(variables)

But it is rare that you get the data in exactly the right form you need

One of the most common tasks you will face is to create new variables or summarize
the data

6 / 45

Recap: Basic Data Transformation
Functions

7 / 45

Data Transformation
We have already worked with the tidyverse set of packages.

The tidyverse library in R provides ways to transform your data using these basic
'verbs'.

Pick observations by their values (filter()).
Reorder the rows (arrange()).
Pick variables by their names (select()).
Create new variables with functions of existing variables (mutate()).
Collapse many values down to a single summary (summarise()).

These can all be used in conjunction with group_by() which changes the scope of
each function from operating on the entire dataset to operating on it group-by-group.

8 / 45

The Pipe Operator
One of the things specific to R is a pipe

I have used, and referred to it, on multiple occasions already

You might come across either %>% or |> , which are essentially the same

They are used to express a sequence of multiple operations

The point of the pipe is to help you write code in a way that is easier to read and
understand

You can take the pipe to mean "take the output from the previous line and use it as
(one of the) inputs on the next line"

9 / 45

Example without pipe operator
result <- sqrt(mean(c(1, 4, 9, 16)))

Example with pipe operator
result <- c(1, 4, 9, 16) |>
 mean() |>
 sqrt()

Example Pipe
The pipe operator |> is a powerful tool in the R programming language that simplifies
and enhances the readability of code, especially in data analysis workflows.

It takes the output from one function and uses it as the first argument of the next
function in the chain.

It enables a more natural, left-to-right style of coding, similar to how we read and
interpret information.
Example (more will follow):

10 / 45

Zooming In On Data

11 / 45

Rows (filter and arrange)
The most important verbs that operate on rows of a dataset are filter() , which
changes which rows are present without changing their order, and arrange() , which
changes the order of the rows without changing which are present.

library(palmerpenguins)
penguins |>
 filter(bill_length_mm < 40) |>
 head(3)

A tibble: 3 × 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
<fct> <fct> <dbl> <dbl> <int> <int> <fct>
1 Adelie Torgersen 39.1 18.7 181 3750 male
2 Adelie Torgersen 39.5 17.4 186 3800 femal
3 Adelie Torgersen 36.7 19.3 193 3450 femal

12 / 45

Rows (filter and arrange)
The most important verbs that operate on rows of a dataset are filter() , which
changes which rows are present without changing their order, and arrange() , which
changes the order of the rows without changing which are present.

palmerpenguins::penguins |>
 arrange(desc(bill_length_mm))

A tibble: 344 × 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
<fct> <fct> <dbl> <dbl> <int> <int> <fct>
1 Gentoo Biscoe 59.6 17 230 6050 male
2 Chinstrap Dream 58 17.8 181 3700 femal
3 Gentoo Biscoe 55.9 17 228 5600 male
4 Chinstrap Dream 55.8 19.8 207 4000 male
5 Gentoo Biscoe 55.1 16 230 5850 male
6 Gentoo Biscoe 54.3 15.7 231 5650 male
7 Chinstrap Dream 54.2 20.8 201 4300 male
8 Chinstrap Dream 53.5 19.9 205 4500 male
9 Gentoo Biscoe 53.4 15.8 219 5500 male
10 Chinstrap Dream 52.8 20 205 4550 male
ℹ 334 more rows

13 / 45

Common Mistakes
When you’re starting out with R, the easiest mistake to make is to use = instead of ==
when testing for equality. filter() will let you know when this happens:

penguins |>
 filter(year = 2007)

Error in `filter()`:
! We detected a named input.
ℹ This usually means that you've used `=` instead of `==`.
ℹ Did you mean `year == 2007`?

Another mistake is you writing “or” statements like you would in English:

penguins |>
 filter(species == "Adelie" | "Chinstrap")

Error in `filter()`:
ℹ In argument: `species == "Adelie" | "Chinstrap"`.
Caused by error in `species == "Adelie" | "Chinstrap"`:
! operations are possible only for numeric, logical or complex types

14 / 45

Columns (mutate and select)
The job of mutate() is to add new columns that are calculated from the existing
columns.

And select() allows you to rapidly zoom in on a useful subset using operations
based on the names of the variables

penguins |>
 mutate(body_mass_kg = body_mass_g/1000) |>
 select(species, island, body_mass_kg)

A tibble: 344 × 3
species island body_mass_kg
<fct> <fct> <dbl>
1 Adelie Torgersen 3.75
2 Adelie Torgersen 3.8
3 Adelie Torgersen 3.25
4 Adelie Torgersen NA
5 Adelie Torgersen 3.45
6 Adelie Torgersen 3.65
7 Adelie Torgersen 3.62
8 Adelie Torgersen 4.68
9 Adelie Torgersen 3.48
10 Adelie Torgersen 4.25

15 / 45

Grouping & Summarizing
You can use group_by() to divide your dataset into groups meaningful for your
analysis:

penguins |>
 group_by(species) |>
 head(5)

A tibble: 5 × 8
Groups: species [1]
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
<fct> <fct> <dbl> <dbl> <int> <int> <fct>
1 Adelie Torgersen 39.1 18.7 181 3750 male
2 Adelie Torgersen 39.5 17.4 186 3800 femal
3 Adelie Torgersen 40.3 18 195 3250 femal
4 Adelie Torgersen NA NA NA NA <NA>
5 Adelie Torgersen 36.7 19.3 193 3450 femal

By itself, group_by() does nothing. However, group_by() is often used together with
summarize or mutate , but this means subsequent operations will now work "by
species".

16 / 45

Grouping & Summarizing
The most important grouped operation is a summary, which, if being used to calculate
a single summary statistic, reduces the data frame to have a single row for each group.

penguins |>
 group_by(species) |>
 summarize(name = mean(body_mass_g, na.rm=T))

A tibble: 3 × 2
species name
<fct> <dbl>
1 Adelie 3701.
2 Chinstrap 3733.
3 Gentoo 5076.

17 / 45

Grouping & Mutate
The function group_by() can also be used together with mutate to create a group
characteristic:

penguins |>
 group_by(species) |>
 mutate(bill_length_depth = bill_length_mm * bill_depth_mm) |>
 select(species, island, body_mass_g, bill_length_depth)

A tibble: 344 × 4
Groups: species [3]
species island body_mass_g bill_length_depth
<fct> <fct> <int> <dbl>
1 Adelie Torgersen 3750 731.
2 Adelie Torgersen 3800 687.
3 Adelie Torgersen 3250 725.
4 Adelie Torgersen NA NA
5 Adelie Torgersen 3450 708.
6 Adelie Torgersen 3650 810.
7 Adelie Torgersen 3625 692.
8 Adelie Torgersen 4675 768.
9 Adelie Torgersen 3475 617.
10 Adelie Torgersen 4250 848.
ℹ 334 more rows 18 / 45

Merging Data

19 / 45

Merging Datasets
It’s rare that a data analysis involves only a single data frame.

Typically you have many data frames, and you must join them together to answer the
questions that you’re interested in.

Joins add new variables to one data frame from matching observations in another.

With the exception of one join, called anti_join() , which filters observations from one
data frame based on whether or not they match an observation in another. We will see
that in lecture 6.

This week, we'll be focusing almost exclusively on joins of the first kind.

20 / 45

Keys
To understand joins, you need to first understand how two tables can be connected
through a pair of keys, within each table.
The variables used to connect each pair of tables are called keys. Two datasets you
might want to merge look as follows:

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 3, "x3"
)
y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2",
 4, "y3"
)

Note that some values of key aren't present in both datasets

21 / 45

Inner and Full Join
The simplest type of join is the inner join. An inner join matches pairs of observations
whenever their keys are equal:

inner_join(x, y, by = "key")

A tibble: 2 × 3
key val_x val_y
<dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2

22 / 45

Inner and Full Join
Does the inner_join() function represent a filtering join or a mutating join?

In addition, there is full_join() :

23 / 45

Inner and Full Join
As you can see, a full join keeps all observations in x and y .

full_join(x, y, by = "key")

A tibble: 4 × 3
key val_x val_y
<dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 3 x3 <NA>
4 4 <NA> y3

24 / 45

Left and Right Joins
However, the most common situation is that you have one particular data.frame to
which you want to merge information from another data.frame

To this end, the functions left_join() and right_join() can be used. They are
symmetrical functions, as you'll see shortly

left_join() proceeds on the basis of the "left" data.frame , the data.frame that is
specified as the first argument to the left_join() function

It then merges the observations from the right data.frame (the second argument of
the function) to the left data.frame in so far as these have a match in the left
data.frame :

left_join(x,y)

A tibble: 3 × 3
key val_x val_y
<dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 3 x3 <NA> 25 / 45

Right Join
The function right_join() works in exactly the same way:

right_join(x, y)

A tibble: 3 × 3
key val_x val_y
<dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 4 <NA> y3

26 / 45

Types of Joins
The following figure depicts the kinds of joins you can do precisely:

27 / 45

Specifying Keys
It also occurs often that you want to join data.frame s on the basis of more than one
key

For example, if you have two datasets of firms (key 1) accounting information in
year (key 2)
Then, the key consists of a firm name and a year in the first dataset, and a firm
name and a year in the second dataset

Here is a second example. Suppose you want to merge a dataset of a country's
electricity output in a particular year to a dataset of a country's GDP per capita in that
same year:

t

28 / 45

Specifying Keys
library(wbstats)
electricity <- wb_data("4.1.1_TOTAL.ELECTRICITY.OUTPUT") |>
 select(country, date, contains('4.1.1'))

electricity |> head(5)

A tibble: 5 × 3
country date `4.1.1_TOTAL.ELECTRICITY.OUTPUT`
<chr> <dbl> <dbl>
1 Aruba 1990 338
2 Aruba 1991 339
3 Aruba 1992 341
4 Aruba 1993 531
5 Aruba 1994 564

29 / 45

Specifying Keys
As you can see, an observation in this data.frame is uniquely identified by a
combination of country and date :

gdp <- wb_data("NY.GDP.PCAP.KD") |>
 select(country, date, contains("NY."))
gdp

A tibble: 13,888 × 3
country date NY.GDP.PCAP.KD
<chr> <dbl> <dbl>
1 Aruba 1960 NA
2 Aruba 1961 NA
3 Aruba 1962 NA
4 Aruba 1963 NA
5 Aruba 1964 NA
6 Aruba 1965 NA
7 Aruba 1966 NA
8 Aruba 1967 NA
9 Aruba 1968 NA
10 Aruba 1969 NA
ℹ 13,878 more rows

30 / 45

Merging With More Keys
All of the _join() functions can also accommodate merging on the basis of more
than one key
If the keys in the datasets have the same name, you do not have to specify any other
arguments in the function

left_join(gdp, electricity) |>
 drop_na()

A tibble: 4,806 × 4
country date NY.GDP.PCAP.KD `4.1.1_TOTAL.ELECTRICITY.OUTPUT`
<chr> <dbl> <dbl> <dbl>
1 Aruba 1990 25411. 338
2 Aruba 1991 26565. 339
3 Aruba 1992 27194. 341
4 Aruba 1993 28307. 531
5 Aruba 1994 29666. 564
6 Aruba 1995 29498. 616
7 Aruba 1996 28958. 642
8 Aruba 1997 30074. 675
9 Aruba 1998 29766. 730
10 Aruba 1999 29263. 738.
ℹ 4,796 more rows 31 / 45

Specifying Keys
However, sometimes, variables have different names in different datasets.
In this situation, you can use the by argument inside the _join() functions. This also
works when variables do have the same name
The syntax is by=c('key1_in_df1' = 'key1_in_df2', 'key2_in_df1' =
'key2_in_df2') :

right_join(gdp, electricity,
 by = c('country' = 'country', 'date' = 'date'))

A tibble: 5,886 × 4
country date NY.GDP.PCAP.KD `4.1.1_TOTAL.ELECTRICITY.OUTPUT`
<chr> <dbl> <dbl> <dbl>
1 Aruba 1990 25411. 338
2 Aruba 1991 26565. 339
3 Aruba 1992 27194. 341
4 Aruba 1993 28307. 531
5 Aruba 1994 29666. 564
6 Aruba 1995 29498. 616
7 Aruba 1996 28958. 642
8 Aruba 1997 30074. 675
9 Aruba 1998 29766. 730
10 Aruba 1999 29263. 738.
ℹ 5 876 more rows

32 / 45

Joining With Inexact Keys
It also frequently happens that you have two data.frame s with keys that should be
the same, but aren't.
For example, you might have one data.frame with an observation "Netherlands", and
another with an observation "The Netherlands"
Since these observations do not match exactly, the _join() family of functions cannot
handle this well
In this case, we might need the fuzzyjoin library, and join two data.frame s on the
basis of string distance: a string distance is some kind of measure encapsulating how
far away to strings are by looking at commonalities between two strings.

33 / 45

Joining With Inexact Keys
The relevant family of functions from the fuzzyjoin package is stringdist_*_join , for
example, stringdist_left_join . It is best to illustrate this with an example. Let me
scrape two tables from Wikipedia:

library(fuzzyjoin); library(rvest); library(janitor)
table_gdp_ppp <- read_html('https://en.wikipedia.org/wiki/List_of_countries_by_GDP
 html_element('table.wikitable') |>
 html_table() |>
 row_to_names(1) |>
 clean_names()

table_gdp_ppp |> head(5)

A tibble: 5 × 8
country_or_territory un_region forecast year estimate year_2 estimat
<chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 World — 185,677,122 2024 164,155,327 2022 127,800
2 China Asia 35,291,015 [n 1]2024 30,327,320 [n 2]2022 23,009,
3 United States Americas 28,781,083 2024 25,462,700 2022 19,846,
4 India Asia 14,594,460 2024 11,874,583 2022 8,443,3
5 Japan Asia 6,720,962 2024 5,702,287 2022 5,224,8

34 / 45

Joining With Inexact Keys
table_electricity <- read_html("https://en.wikipedia.org/wiki/List_of_countries_by
 html_table() |>
 pluck(1) |>
 row_to_names(row_number = 1) |>
 clean_names()

table_electricity |> head(5)

A tibble: 5 × 11
location total_t_wh coal gas hydro nuclear wind solar oil bio geo
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 World 28,003 10,095 6,399 4,246 2,750 1,848 1,047 868 657 93
2 China 8,534 5,329 287 1,300 408 656 327 62 166 0
3 United States 4,154 898 1,579 246 780 378 164 35 54 18
4 India 1,715 1,274 60 160 44 68 68 3 37 0
5 Russia 1,110 169 485 215 222 4 2 12 0.8 0.4

35 / 45

Joining With Inexact Keys
As you can see, both table_gdp_ppp and table_electricity contain country names

In country_or_territory and location respectively

However, country names might be spelled differently, e.g. Netherlands vs. The
Netherlands

They might still contain commonalities: "The Netherlands" and "Netherlands" have
everthing in common except "The"
It turns out you can calculate string distances that quantify the differences
between strings
Then, we can use these distances to match observations given strings in two
datasets

36 / 45

Joining With Inexact Keys
Let's left_join table_gdp_ppp to table_electricity on the basis of fuzzy string
matching:

matched_df <- stringdist_left_join(table_gdp_ppp, table_electricity,
 by = c('country_or_territory'='location'),
 max_dist = 0.5)

matched_df |> head(5)

A tibble: 5 × 19
country_or_territory un_region forecast year estimate year_2 estimate_2 year_3 lo
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <c
1 World — 185,677… 2024 164,155… 2022 127,800,0… 2017 Wo
2 China Asia 35,291,… [n 1… 30,327,… [n 2]… 23,009,780 [n 1]… Ch
3 United States Americas 28,781,… 2024 25,462,… 2022 19,846,720 2020 Un
4 India Asia 14,594,… 2024 11,874,… 2022 8,443,360 2020 In
5 Japan Asia 6,720,9… 2024 5,702,2… 2022 5,224,850 2019 Ja
ℹ 5 more variables: wind <chr>, solar <chr>, oil <chr>, bio <chr>, geo <chr>

37 / 45

Pivoting Data Sets

38 / 45

Pivoting
A dataset can also be in the wrong shape, or contain all the information you need, but
not according to the principles of tidy data

For example, take a look at this dataset about tuberculosis cases:

table4a

A tibble: 3 × 3
country `1999` `2000`
<chr> <dbl> <dbl>
1 Afghanistan 745 2666
2 Brazil 37737 80488
3 China 212258 213766

39 / 45

Pivoting
This data is not tidy, as two variables (year, and cases) are jointly stored in several
columns instead of as one variable, one column

We want a dataset that contains the columns country , year , and tb_cases

The first step is always to figure out what the variables and observations should be

The second step is to resolve one of two common problems:

One variable might be spread across multiple columns
One observation might be scattered across multiple rows.

Pivoting is the way in which you reshape datasets from such a format to a tidy format
and the other way around

There exists two kind of pivots: from wide to long and from long to wide
Which do we have to use now?

40 / 45

Pivot Longer
pivot_longer takes three arguments:

the columns whose names are values, not variables. In this example, those are the
columns with the years in it
the name of the variable to which we want to move the columns' names
the name of the variable to which we want to move the columns' value

table4a |>
 pivot_longer(cols = where(is.double),
 names_to = 'year',
 values_to = 'tc_cases')

A tibble: 6 × 3
country year tc_cases
<chr> <chr> <dbl>
1 Afghanistan 1999 745
2 Afghanistan 2000 2666
3 Brazil 1999 37737
4 Brazil 2000 80488
5 China 1999 212258
6 China 2000 213766

41 / 45

Pivot Wider
pivot_wider() is the opposite of pivot_longer(). You use it when an observation is
scattered across multiple rows:

table2 |> head(6)

A tibble: 6 × 4
country year type count
<chr> <dbl> <chr> <dbl>
1 Afghanistan 1999 cases 745
2 Afghanistan 1999 population 19987071
3 Afghanistan 2000 cases 2666
4 Afghanistan 2000 population 20595360
5 Brazil 1999 cases 37737
6 Brazil 1999 population 172006362

42 / 45

Parameters of Pivot Wider
This time, however, we only need two parameters:

The column to take variable names from. Here, it’s type
The column to take values from. Here it’s count

table2 |>
 pivot_wider(names_from = type,
 values_from = count)

A tibble: 6 × 4
country year cases population
<chr> <dbl> <dbl> <dbl>
1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

43 / 45

Recapitulation

44 / 45

Recapitulation
In this lecture, we went over some important features/operations used to zoom in on,
and clean data

We also learned to use some of these functions in the context of grouped data

We extensively focused on merging data:

We learned the standard merging logic of _join()
We learned several alternatives in case you do not have key variables

We learned how to reshape data into a tidy format

45 / 45

