
Introduction to Applied Data Science
Lecture 6: Spatial & Network Data

Bas Machielsen
Utrecht University
2024-06-04

Lecture 6: Spatial and Network Data

2 / 46

Lecture 6: Spatial and Network Data
Overview of this class:

Introduction to Data Science
Introduction to R & Programming
Getting Data: API’s and Databases
Getting Data: Web Scraping
Transforming and Cleaning Data
This lecture: Spatial & Network Data
Text as Data and Mining
Data Science Project

3 / 46

Introduction

4 / 46

Introduction
In this lecture, we will get to know two new types of data, spatial data and network
data

Spatial data combines the features of data we already know with spacial features

Spatial data is getting more and more important, so we need tools to work with it
Depending on the specific spatial format, this can represent real-life geographical
objects such as countries, roads, seas, or other geographical entities
It can also represent more abstract objects depicting distances between each
other

Network data describes relationships among units rather than units in isolation.

Examples include friendship networks among people, citation networks among
academic articles, and trade and alliance networks among countries.
Network data is different from traditional data in that the unit of analysis is a
relationship between two nodes

5 / 46

Spatial Data

6 / 46

Spatial Data
As mentioned, the main example of spatial data we'll be dealing with are maps
Spatial data usually does not only come with "shape" attributes, but also with
coordinates, so the attributes can be put in relation to everything else
For example:

library(rnaturalearth); library(sf)
be <- ne_states(country="Belgium",
 returnclass = "sf")

ggplot(be) + geom_sf()

7 / 46

Spatial Data
This is what the object be looks like:

class(be)

[1] "sf" "data.frame"

nrow(be)

[1] 11

ncol(be)

[1] 122

As you can see, be is a data.frame ! It has 11 rows and 122 columns
Each row corresponds to a particular province of Belgium, and each column to
particular information about that province

8 / 46

Spatial Data Frame
For example, name_fr contains the name (in French) of each province

be |>
 select(name_fr)

Simple feature collection with 11 features and 1 field
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2.5218 ymin: 49.49522 xmax: 6.374525 ymax: 51.49624
Geodetic CRS: WGS 84
First 10 features:
name_fr geometry
201 Flandre-Occidentale MULTIPOLYGON (((2.866726 50...
202 Hainaut MULTIPOLYGON (((3.023817 50...
204 Namur MULTIPOLYGON (((4.968371 49...
206 Luxembourg MULTIPOLYGON (((5.391166 49...
209 Liège MULTIPOLYGON (((6.117487 50...
761 Flandre-Orientale MULTIPOLYGON (((3.398798 51...
763 d'Anvers MULTIPOLYGON (((4.281124 51...
764 Limbourg MULTIPOLYGON (((5.551407 51...
1710 Bruxelles-Capitale MULTIPOLYGON (((4.479746 50...
1711 Brabant flamand MULTIPOLYGON (((4.099739 50...

9 / 46

Spatial Data Features
But in addition to being a data.frame , be also has class sf , short for spatial features

st_geometry(be)

Geometry set for 11 features
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2.5218 ymin: 49.49522 xmax: 6.374525 ymax: 51.49624
Geodetic CRS: WGS 84
First 5 geometries:

This dataset contains 11 features, corresponding to each of these provinces
Each of these provinces is represented as a polygon and is geocoded
The bounding box of be is represented by coordinates in a certain coordinate system
In this case, the Coordinate Reference System is called WGS84

There exist different coordinate systems: we'll talk about this more later

10 / 46

Kinds of Spatial Data
In general, there exist roughly two types of spatial data:

Vector data: represents things with points, lines and polygons. Vector data can
scale and stretch and transform those easily with mathematical operations. Can
increase precision to arbitrary levels (can always zoom in futher). It allows allows
us to ask questions about statial relations, such as what is the area of an object,
what is the distance from one object to another, or which objects border other
objects.
Raster data: fixed-size tiles or cells (like a mosaic, or like pixels), which form a grid.
Fixed resolution. Raster data is like an image with geo-coded pixels. Satellite
images, for example, are usually released in the form of raster data. Other
examples of raster data include population density images, species occurence
data, and meteorological data.

As you might have guessed, be is an example of vector data.

11 / 46

Example Raster Data
Temperature data is an example of raster data:

Each "pixel" is geocoded and has a particular value for a particular variable, in this
case, a temperature
Each geocoded value represents a particular temperature as measured (inferred)
in a particular area marked by the "pixel"
Raster data can differ in terms of its granularity, i.e. how detailed the data is

12 / 46

CRS
We all agree the earth is round (hopefully)
However, you need coordinates to describe where is what

Usually, this is based on a three-dimensional model of the earth

Coordinates are given in latitude and longitude.
An example CRS is EPSG:4326 (also known WGS 84).

There also exist CRS that are "projected":

Transforms the earth’s curved surface onto a flat surface.
This advantage is that coordinates are given in linear units (e.g., meters).
Disadvantage: distorts surface
Example: Mercator projection, EPSG:3857

13 / 46

CRS in R
Setting a CRS:

library(sf)
point <- st_point(c(4.8897, 52.3740)) # Amsterdam coordinates
sf_point <- st_sfc(point, crs = 4326)

Checking a CRS:

st_crs(sf_point)[1] # Remove the [1] to see full output

$input
[1] "EPSG:4326"

Changing a CRS from one to another:

sf_point_transformed <- st_transform(sf_point, 3857)

14 / 46

Vector Data

15 / 46

Working With Vector Data: Select
You can work with vector data using the tidyverse library

For example, data can be selected:

library(rnaturalearth)
nl <- ne_states("Netherlands", returnclass="sf")
nl_short <- nl |>
 select(name, latitude, longitude)

nl_short |> head(4)

Simple feature collection with 4 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 5.00448 ymin: 51.73483 xmax: 7.198506 ymax: 53.55809
Geodetic CRS: WGS 84
name latitude longitude geometry
408 Groningen 53.2790 6.73067 MULTIPOLYGON (((7.194591 53...
410 Drenthe 52.9046 6.60064 MULTIPOLYGON (((7.072151 52...
411 Overijssel 52.4311 6.41649 MULTIPOLYGON (((6.719083 52...
413 Gelderland 52.0635 5.96001 MULTIPOLYGON (((6.771576 52...

16 / 46

Working With Vector Data: Filter
Or data can be filtered:

nl_short |>
 filter(name == "Utrecht")

Simple feature collection with 1 feature and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 4.767854 ymin: 51.94117 xmax: 5.61974 ymax: 52.28549
Geodetic CRS: WGS 84
name latitude longitude geometry
1 Utrecht 52.0749 5.1938 MULTIPOLYGON (((5.408922 52...

17 / 46

Working With Vector Data: Mutate
Or new variables can be added

There are some special functions in the sf package that calculate distances and
areas: st_distance() and st_area()

nl_short |>
 mutate(area = st_area(geometry)) |>
 select(name, area) |>
 head(4)

Simple feature collection with 4 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 5.00448 ymin: 51.73483 xmax: 7.198506 ymax: 53.55809
Geodetic CRS: WGS 84
name area geometry
408 Groningen 2386242755 [m^2] MULTIPOLYGON (((7.194591 53...
410 Drenthe 2626372215 [m^2] MULTIPOLYGON (((7.072151 52...
411 Overijssel 3331334171 [m^2] MULTIPOLYGON (((6.719083 52...
413 Gelderland 5113884777 [m^2] MULTIPOLYGON (((6.771576 52...

18 / 46

Working With Vector Data: Join
You can also join a spatial data.frame with another data.frame using the _join()
functions
I download labor market participation data using the cbsodataR package

I select only provinces and focus on the year 2022
I use the clean_names() function from the janitor package to clean variable
names, and do a minor clean-up of a variable:

library(cbsodataR); library(janitor)
labor <- cbs_get_data("85268NED",
 Perioden = "2022JJ00",
 RegioS = has_substring("PV")) |>
 clean_names() |>
 mutate(regio_s = str_trim(regio_s))

labor |> head(2)

A tibble: 2 × 18
regio_s perioden beroeps_en_niet_beroepsbevolking_1 beroepsbevolking_2 werkzame_be
<chr> <chr> <int> <int>
1 PV20 2022JJ00 450 330
2 PV21 2022JJ00 481 357
ℹ 11 more variables: positie in de werkkring onbekend 6 <int>, beroepsniveau1 7 <in

19 / 46

Working With Vector Data: Join
These data should be merged with a spatial data.frame
I also download the Dutch provinces using the cbs_get_sf() function

I am using this because I get the same identifier as in the labor data.frame:

provincies <- cbs_get_sf("provincie", year = 2022)
provincies |> head(5)

Simple feature collection with 5 features and 2 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 118774 ymin: 459728 xmax: 277529 ymax: 619172
Projected CRS: Amersfoort / RD New
A tibble: 5 × 3
statcode statnaam
<chr> <chr>
1 PV20 Groningen (((269919 540356, 268516 541104, 266297 544126, 264580 544106,
2 PV21 Fryslân (((139834 589987, 138042 588615, 137661 590369, 139834 589987)
3 PV22 Drenthe (((269919 540356, 268563 537232, 268290 527517, 267857 518738,
4 PV23 Overijssel (((244564 516409, 245758 514996, 245235 512060, 248533 509328,
5 PV24 Flevoland (((182511 535552, 184106 533460, 186243 533127, 188252 531868,

20 / 46

Working With Vector Data: Join
Now, these two data.frames can be merged:

prov_labor <- provincies |>
 left_join(labor, by = c('statcode' = 'regio_s')) |>
 select(statcode, statnaam, netto_arbeidsparticipatie_16)

prov_labor |> head(5)

Simple feature collection with 5 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 118774 ymin: 459728 xmax: 277529 ymax: 619172
Projected CRS: Amersfoort / RD New
A tibble: 5 × 4
statcode statnaam netto_arbeidsparticipatie_16
<chr> <chr> <dbl>
1 PV20 Groningen 70.4 (((269919 540356, 268516 541104,
2 PV21 Fryslân 71.6 (((139834 589987, 138042 588615,
3 PV22 Drenthe 70.6 (((269919 540356, 268563 537232,
4 PV23 Overijssel 73.5 (((244564 516409, 245758 514996,
5 PV24 Flevoland 73.4 (((182511 535552, 184106 533460,

21 / 46

Working With Vector Data: Plot
Finally, you can plot the data using a few simple commands (details are for a later
course):

prov_labor |>
 ggplot(aes(fill = netto_arbeidsparticipatie_16)) + geom_sf()

22 / 46

Working With Vector Data: Spatial
In addition to working with spatial sf data.frames using the tidyverse library, there are
also a couple of specific operations to spatial data

Spatial operations, including spatial joins between vector datasets and local and
several operations on raster datasets, are a vital part of geocomputation.

For more resources on this, see the Geocomputation with R Ebook

We'll demonstrate a couple of spatial operations including:

Spatial subsetting
Topological relations
Distance relations

In addition, there exists two other, more advanced subjects for study in other courses:

Spatial joining
Spatial aggregations

23 / 46

https://r.geocompx.org/

Working With Vector Data: Schools
Spatial subsetting is the process of taking a spatial object and returning a new object
containing only features that relate in space to another object.

For example, here's a dataset containing all schools in the Netherlands:

schools <- read_csv2('https://duo.nl/open_onderwijsdata/images/01.-hoofdvestiginge
 mutate(POSTCODE = str_remove(POSTCODE, " "))
schools |> head(3)

A tibble: 3 × 29
PROVINCIE `BEVOEGD GEZAG NUMMER` INSTELLINGSCODE INSTELLINGSNAAM STRAAT
<chr> <dbl> <chr> <chr> <chr>
1 Drenthe 32073 03WU Kindcentrum De Wegwijzer Harm T
2 Drenthe 32073 04LY Christelijk Kindcentrum D… Molens
3 Drenthe 32073 04TG Kindcentrum Drijber Nijenk
ℹ abbreviated name: ¹​̀HUISNUMMER-TOEVOEGING`
ℹ 21 more variables: GEMEENTENUMMER <chr>, GEMEENTENAAM <chr>, DENOMINATIE <chr>, T
`STRAATNAAM CORRESPONDENTIEADRES` <chr>, `HUISNUMMER-TOEVOEGING CORRESPONDENTIEA
`POSTCODE CORRESPONDENTIEADRES` <chr>, `PLAATSNAAM CORRESPONDENTIEADRES` <chr>,
`NODAAL GEBIED NAAM` <chr>, `RPA-GEBIED CODE` <chr>, `RPA-GEBIED NAAM` <chr>, `W
`WGR-GEBIED NAAM` <chr>, `COROPGEBIED CODE` <chr>, `COROPGEBIED NAAM` <chr>, `ON
`ONDERWIJSGEBIED NAAM` <chr>, `RMC-REGIO CODE` <chr>, `RMC-REGIO NAAM` <chr>

24 / 46

Working With Vector Data: Schools
And here's a dataset with spatial distributions of postal codes, allowing to link a school
to a location

Available on the Dutch Geodata Portal

#post_codes <- st_read('https://service.pdok.nl/cbs/postcode6/atom/downloads/cbs_p
post_codes <- st_read('./cbs_pc6_2022_v1.gpkg', quiet=TRUE) |>
 select(postcode)

post_codes |>
 head(5)

Simple feature collection with 5 features and 1 field
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 121039.2 ymin: 487028.2 xmax: 122311 ymax: 488296.8
Projected CRS: Amersfoort / RD New
postcode geom
1 1011DD MULTIPOLYGON (((122311 4877...
2 1012AC MULTIPOLYGON (((121800.6 48...
3 1012CJ MULTIPOLYGON (((121600.4 48...
4 1012MA MULTIPOLYGON (((121551.6 48...
5 1013GR MULTIPOLYGON (((121112.3 48...

25 / 46

https://www.pdok.nl/introductie/-/article/cbspostcode6

Working With Vector Data: Schools
We link them together and display the location of schools in the Netherlands:

schools_geocoded <- left_join(schools,
 post_codes,
 by=c('POSTCODE'='postcode')) |>
 st_as_sf()

schools_geocoded |>
 ggplot() + geom_sf()

26 / 46

Working With Vector Data: Subsetting
Then, suppose we're only interested only interested in schools in the Utrecht province:

utrecht <- cbs_get_sf("provincie", year=2022) |>
 filter(statnaam == "Utrecht")

We can now simply use spatial subsetting to "filter" our schools_geocoded data.frame
to look at only observations from the Utrecht province:

schools_geocoded[utrecht,] |>
 st_centroid() |>
 ggplot() +
 geom_sf()

27 / 46

Working With Vector Data: Topology
Topological relations describe the spatial relationships between objects.

These are logical statements (in that the answer can only be TRUE or FALSE) about the
spatial relationships between two objects

A simple question is: which of the points in schools_geocoded intersect in some way
with polygon of the city of Utrecht?

This question can be answered with the spatial predicate st_intersects() as follows:

28 / 46

Working With Vector Data: Topology
st_intersects() with the argument sparse=FALSE returns a TRUE/FALSE for each
datapoint in schools_geocoded

Find Polygon of Utrecht Municipality
gem_utrecht <- cbs_get_sf("gemeente", 2023) |> filter(statnaam == "Utrecht")
schools_geocoded <- schools_geocoded |>
 mutate(is_inside_utrecht_municipality = st_intersects(schools_geocoded,
schools_geocoded |>
 select(is_inside_utrecht_municipality) |> head(3)

Simple feature collection with 3 features and 1 field
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 232918.9 ymin: 533975.6 xmax: 258342.5 ymax: 549358
Projected CRS: Amersfoort / RD New
A tibble: 3 × 2
is_inside_utrecht_municipality[,1]
<lgl>
1 FALSE (((258188.9 547230.8, 258197.3 547225.4, 258207
2 FALSE (((249736.7 548846.2, 249735 548833.4, 249724.8
3 FALSE (((233262.5 534196, 233255.7 533985.1, 233254.7

29 / 46

Working With Vector Data: Topology
In addition to st_intersects() , you can also use one of the following functions:

The opposite of st_intersects() is st_disjoint() , which returns only TRUE for
objects that do not spatially relate in any way to the selecting object
The function st_is_within_distance() detects features that almost touch the
selection object, which has an additional dist argument
st_within() and st_touches() returns T/F for objects in the first argument that
are strictly within and strictly on the boundary of the second object

30 / 46

Working With Vector Data: Distance
While the topological relations presented in the previous section are binary
(TRUE/FALSE), distance relations are continuous.

The distance between two sf objects is calculated with st_distance()

st_distance() takes two arguments:
If you put in two spatial data.frames, you'll get back a distance matrix
I.e. a matrix reflecting the distance from each element in to each element in

distance_matrix <- st_distance(schools_geocoded, provincies)
dim(distance_matrix)

[1] 6069 12

Meaning this matrix contains the distance for 6065 schools to (the centroids of) 12
provinces.

x y

31 / 46

Working With Vector Data: Distance
But sometimes, you might want to calculate the minimum or maximum distance
between each object in a data.frame and another set of points or polygons

You can do that using the following:

Take the distance matrix as before
For each row, ask what is the minimum or maximum element:

max_distances <- apply(distance_matrix, 1, max)
max_distances[1:10]

[1] 231081.6 225551.2 203325.0 231413.8 233384.6 235838.7 232801.0 204200.9 213738.

32 / 46

Working With Vector Data: No Data?
R also has packages that allow us to geocode place names or addresses: the osmdata
package can be used to convert names to geographic coordinates.

Use the getbb() function to "Google" for a place

library(osmdata, quietly=TRUE)
utrecht <- getbb("Utrecht, The Netherlands")
utrecht

min max
x 4.970096 5.195155
y 52.026282 52.142051

33 / 46

Working With Vector Data: No Data?
Then, either get the polygon or the centroid
And turn it into a spatial data.frame using st_as_sf()

Pick the center of this bounding box
centroid <- data.frame(x=(utrecht[1,1]+utrecht[1,2])/2, y = (utrecht[2,1]+utrecht[
Transform it into sf format:
st_as_sf(centroid, coords = c('x', 'y'), crs='wgs84')

Simple feature collection with 1 feature and 0 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 5.082626 ymin: 52.08417 xmax: 5.082626 ymax: 52.08417
Geodetic CRS: WGS 84
geometry
1 POINT (5.082625 52.08417)

34 / 46

Network Data

35 / 46

Network Data
Next, we consider network data, which describes relationships among units rather than
units in isolation.

Examples include friendship networks among people, citation networks among
academic articles, and trade and alliance networks among countries.

Analysis of network data differs from the data analyses we have covered so far in that
the unit of analysis is a relationship (Imai, 2018).

36 / 46

Network Data Types
The basic package to deal with network data in R is called igraph . Install it and load
it
Also install and load a package called igraphdata , which features some example
datasets we'll use during this lecture

library(igraph)
library(igraphdata)

As a running example, we'll use a dataset from igraphdata called Koenigsberg :

data(Koenigsberg)

37 / 46

Background
From ?Koenigsberg

The Seven Bridges of Koenigsberg is a notable historical problem in
mathematics. Its negative resolution by Leonhard Euler in 1735 laid the
foundations of graph theory and presaged the idea of topology. The city of
Koenigsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the
Pregel River, and included two large islands which were connected to each
other and the mainland by seven bridges.

The problem was to find a walk through the city that would cross each bridge
once and only once. The islands could not be reached by any route other than
the bridges, and every bridge must have been crossed completely every time
(one could not walk half way onto the bridge and then turn around and later
cross the other half from the other side).

38 / 46

Network Data Types
The first thing we can do is display this dataset in a convenient format:

The number represents how many bridges there are between city part and city
part

as.matrix(Koenigsberg)

4 x 4 sparse Matrix of class "dgCMatrix"
Altstadt-Loebenicht Kneiphof Vorstadt-Haberberg Lomse
Altstadt-Loebenicht . 2 . 1
Kneiphof 2 . 2 1
Vorstadt-Haberberg . 2 . 1
Lomse 1 1 1 .

x

y

39 / 46

Network Data Types
Networks are usually displayed as mathematical objects called graphs

A graph consists of a set of nodes (or vertices) and a set of edges (or ties) , i.e.,
.

A node represents an individual unit and is typically depicted as a solid circle.
In our case: Altstadt-Loebenicht, Kneiphof, Vorstadt-Haberbeg, Lomse

An edge, on the other hand, represents the existence of a relationship between any
pair of nodes via a line connecting those nodes.

In our case: a bridge

G V E

G = (V ,E)

40 / 46

Network Data Types
Graphs can be contained in special matrices called adjacency matrices:

An adjacency matrix is a matrix whose entries represent the existence of
relationships between two units (one unit represented by the row and the other
represented by the column)

In our case:

adjacency_graph <- graph.adjacency(as.matrix(Koenigsberg), mode="undirected")
plot(adjacency_graph)

41 / 46

Analyzing Networks
There exist a variety of graph-based measures that can quantify centrality, or the
extent to which each node is connected to other nodes and appears in the center of a
graph.

The number of edges, or degree, is perhaps the most crude measure of how well a
node is connected to the other nodes in a graph.

For this example, let's consider the karate dataset:

data(karate)
graph.adjacency(as.matrix(karate), mode="undirected") |> plot()

42 / 46

Analyzing Networks
The number of edges, or degree, is perhaps the most crude measure of how well a
node is connected to the other nodes in a graph.

degree(karate)

Mr Hi Actor 2 Actor 3 Actor 4 Actor 5 Actor 6 Actor 7 Actor 8 Actor 9 Act
16 9 10 6 3 4 4 4 5
Actor 15 Actor 16 Actor 17 Actor 18 Actor 19 Actor 20 Actor 21 Actor 22 Actor 23 Act
2 2 2 2 2 3 2 2 2
Actor 29 Actor 30 Actor 31 Actor 32 Actor 33 John A
3 4 4 6 12 17

43 / 46

Analyzing Networks
(From Imai, 2018)

Degree is problematically a local measure because it simply counts the number of
edges that come out of a given node. As a result, it does not account for the structure
of the graph beyond its immediate neighbors.

As an alternative, we can count the sum of edges from a given node to all other nodes
in a graph, including the ones that are not directly connected.

This measure, called farness, describes how far apart a given node is from each one of
all other nodes in the graph. This contrasts with degree, which counts the number of
connected nodes. The inverse of farness, closeness, represents another measure of
centrality:

The distance between two nodes is the number of edges in the shortest path, which is
the shortest sequence of connected nodes, between the two nodes of interest.

closeness(v) =
1

∑
u∈V ,u≠v distance(v, u)

44 / 46

Analyzing Networks
In R, we use the closeness() function to calculate the closeness for each node:

(cl <- closeness(karate))

Mr Hi Actor 2 Actor 3 Actor 4 Actor 5 Actor 6 Actor 7
0.007692308 0.006060606 0.005952381 0.005347594 0.004629630 0.004608295 0.004651163
Actor 11 Actor 12 Actor 13 Actor 14 Actor 15 Actor 16 Actor 17
0.005319149 0.004424779 0.006211180 0.005780347 0.005181347 0.004166667 0.003289474
Actor 21 Actor 22 Actor 23 Actor 24 Actor 25 Actor 26 Actor 27
0.006172840 0.005347594 0.004807692 0.004201681 0.004784689 0.003745318 0.005128205
Actor 31 Actor 32 Actor 33 John A
0.005263158 0.006329114 0.006060606 0.007633588

We can also calculate the correlation between different measures of centrality:

de <- degree(karate); cor(cl, de)

[1] 0.5860469

45 / 46

Recapitulation
We have learned a lot about spatial data today

We have learned the difference between vector and raster data
We have learned what projections are
We have learned how to work with vector data in various ways
Including by using spatial operations

We have also seen various data packages containing spatial data

In addition, we have seen the preliminaries of network data

We have seen how graphs are used to represent network data
We have seen two measures of centrality ("importance"), the degree and the
closeness

46 / 46

