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Introduction
Overview of this class:

Introduction to Data Science
Introduction to R & Programming
Getting Data: API’s and Databases
Getting Data: Web Scraping
Transforming and Cleaning Data
Spatial & Network Data
This lecture: Text as Data and Mining
Data Science Project
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Introduction
As you know by now, there are many kinds of different data

(Silge and Robinson, 2021) note:

Analysts are often trained to handle tabular or rectangular data that is mostly
numeric, but much of the data proliferating today is unstructured and text-
heavy. Many of us who work in analytical fields are not trained in even simple
interpretation of natural language.

One approach is to treat text as data.frames  of individual words:

We can manipulate, summarize, and visualize the characteristics of text easily and
integrate natural language processing into effective workflows we were already using.

One possible goal of this: an attempt to transform text into numbers
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Today's Program
We will talk about the equivalent of tidy data specially for text data, called tidy text

We will explore sentiment analysis, a naive and basic way to analyze and quantify text
data

We generalize the practice of sentiment analysis to frequency analysis and N-grams

Finally, we'll talk about a slightly more sophisticated method of analyzing text data
called topic modeling
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Tidy Text
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Tidy Text
Remember the tidy data format:

Each variable is a column
Each observation is a row
Each type of observational unit is a table

We define the tidy text format as being a data.frame  with one-token-per-row.

A token is a meaningful unit of text, such as a word, that we are interested in using for
analysis, and tokenization is the process of splitting text into tokens.

For now, you can think of a token as a word, but there are several reservations: e.g. is a
stop word a token? How about a dot?
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Example Tidy Text
Suppose we want to turn this text into a tidy format:

library(tidytext)
text_df <- tibble(text = c("To be, or not to be; that is the question;",
                           "Whether 'tis nobler in the mind to suffer",
                           "The slings and arrows of outrageous fortune",
                           "Or to take arms against a sea of troubles"),
                  lines=1:4)

text_df

## # A tibble: 4 × 2
##   text                                        lines
##   <chr>                                       <int>
## 1 To be, or not to be; that is the question;      1
## 2 Whether 'tis nobler in the mind to suffer       2
## 3 The slings and arrows of outrageous fortune     3
## 4 Or to take arms against a sea of troubles       4
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Example Tidy Text
We can do so using the unnest_tokens()  function:

Where the syntax is unnest_tokens(data.frame, output, input)

text_df |>
  unnest_tokens(word, text) |> 
  head(5)

## # A tibble: 5 × 2
##   lines word 
##   <int> <chr>
## 1     1 to   
## 2     1 be   
## 3     1 or   
## 4     1 not  
## 5     1 to
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Other Text Data Structures
It is insightful to compare tidy text to other data structures (which we will also use)

Simple string format: Easiest format. In R: character vectors

Often raw data is first read into memory in this form (See previous example)
E.g.: you copy or extract a text from a Wikipedia page

Corpus: These types of objects typically contain raw strings annotated with additional
metadata and details (In our example: line numbers)

Document-term matrix: A data.frame  (i.e., a corpus) of documents with one row for
each document and one column for each term.

The value in the matrix is typically a word count or the tf-idf (we'll get to this
later)
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Unnest Tokens
How to proceed from one format to another?
We have already seen how to go from string format to tidy text:

text <- c("Lorem Ipsum is simply dummy text of the printing and typesetting indust
          Lorem Ipsum has been the industry's standard dummy text ever since the 1
          when an unknown printer took a galley of type and scrambled it to make a 
          specimen book. It has survived not only five centuries, but also the lea
          electronic typesetting, remaining essentially unchanged.")

tokens <- tibble(text = text) |>
  unnest_tokens(word, text)

tokens |> head(5)

## # A tibble: 5 × 1
##   word  
##   <chr> 
## 1 lorem 
## 2 ipsum 
## 3 is    
## 4 simply
## 5 dummy
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Example: Cleaning Data from Books
We have a dataset austen_books()  from the janeaustenr  package, with raw text data
from Jane Austen books, from which we will make a corpus:

library(janeaustenr)
original_books <- austen_books() |>
  group_by(book) |>
  mutate(linenumber = row_number(),
         chapter = cumsum(str_detect(text,  # Regex detects Roman Numerals
                                     regex("^chapter [\\divxlc]",
                                           ignore_case = TRUE)))) |>
  ungroup()

original_books |> head(5)

## # A tibble: 5 × 4
##   text                    book                linenumber chapter
##   <chr>                   <fct>                    <int>   <int>
## 1 "SENSE AND SENSIBILITY" Sense & Sensibility          1       0
## 2 ""                      Sense & Sensibility          2       0
## 3 "by Jane Austen"        Sense & Sensibility          3       0
## 4 ""                      Sense & Sensibility          4       0
## 5 "(1811)"                Sense & Sensibility          5       0
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Example: Cleaning Data from Books
From this corpus, we now make tokens using the unnest_tokens()  function:

book_tokens <- original_books |>
  unnest_tokens(word, text)

book_tokens |> head(8)

## # A tibble: 8 × 4
##   book                linenumber chapter word       
##   <fct>                    <int>   <int> <chr>      
## 1 Sense & Sensibility          1       0 sense      
## 2 Sense & Sensibility          1       0 and        
## 3 Sense & Sensibility          1       0 sensibility
## 4 Sense & Sensibility          3       0 by         
## 5 Sense & Sensibility          3       0 jane       
## 6 Sense & Sensibility          3       0 austen     
## 7 Sense & Sensibility          5       0 1811       
## 8 Sense & Sensibility         10       1 chapter
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Stop Words
We have already seen various words, like "chapter", which we intuitively do not accord
relevance

A similar argument pertains to words like "the, it, and," etc. , i.e. stop words

These words often lack relevance

But you should be careful in deciding whether to remove them

An easy way (in English) to remove them is provided by the tidytext  package in the
dataset stop_words :

stop_words |> head(5)

## # A tibble: 5 × 2
##   word  lexicon
##   <chr> <chr>  
## 1 a     SMART  
## 2 a's   SMART  
## 3 able  SMART  
## 4 about SMART  
## 5 above SMART 14 / 46



Removing Stop Words
An easy way to remove stop words is to use the anti_join()  function
anti_join()  removes all words in the "left" dataset that also exist in the "right"
dataset

clean_tokens <- book_tokens |> anti_join(stop_words) 

clean_tokens |> 
  head(8)

## # A tibble: 8 × 4
##   book                linenumber chapter word       
##   <fct>                    <int>   <int> <chr>      
## 1 Sense & Sensibility          1       0 sense      
## 2 Sense & Sensibility          1       0 sensibility
## 3 Sense & Sensibility          3       0 jane       
## 4 Sense & Sensibility          3       0 austen     
## 5 Sense & Sensibility          5       0 1811       
## 6 Sense & Sensibility         10       1 chapter    
## 7 Sense & Sensibility         10       1 1          
## 8 Sense & Sensibility         13       1 family
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Adding Words to Stop Words
You can also add words to a stop words list manually

For future reference, let's add numbers to the stop_words  data.frame:

numbers <- tibble(word = 0:3000, lexicon = "custom") |> 
  mutate(word=as.character(word))

stop_words <- bind_rows(numbers, stop_words)

The R package stopwords  contains many lists of stop words in many different
languages
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Word Frequency
The first basic analysis we can perform on this tidy text data is computing the word
frequency

We can obtain a word frequency list by:

clean_tokens |>
  count(word, sort = TRUE) |>
  head(10)

## # A tibble: 10 × 2
##    word       n
##    <chr>  <int>
##  1 miss    1855
##  2 time    1337
##  3 fanny    862
##  4 dear     822
##  5 lady     817
##  6 sir      806
##  7 day      797
##  8 emma     787
##  9 sister   727
## 10 house    699
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Another Example: Wikipedia
We use web scraping to extract a text from an article on Wikipedia

Remove stop words
And then count word frequency

library(rvest)
link <- "https://en.wikipedia.org/wiki/2022_FIFA_World_Cup"

# Go to the wikipedia page, right click, look at the structure of the page
# Extract all p's in a <div> with class "mw-parser-output"
wc2022 <- read_html(link) |> 
  html_elements("div.mw-parser-output p") |> 
  html_text()

data <- tibble(section = seq(wc2022), text = wc2022) |>
  unnest_tokens(word, text) |>
  anti_join(stop_words)
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The tidy text data looks like this:

data |> 
  head(5)

## # A tibble: 5 × 2
##   section word 
##     <int> <chr>
## 1       3 fifa 
## 2       3 world
## 3       3 cup  
## 4       3 22nd 
## 5       3 fifa

Now, we can make a word frequency
count:

data |> 
  count(word, sort = TRUE) |> 
  head(5)

## # A tibble: 5 × 2
##   word           n
##   <chr>      <int>
## 1 world        118
## 2 cup           99
## 3 fifa          88
## 4 qatar         81
## 5 tournament    62

Another Example: Wikipedia
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Wordcloud
This is also the basis for a visualization technique called a wordcloud

library(wordcloud)

data |> 
  count(word, sort = TRUE) |>
  with(wordcloud(word, n, max.words = 100))
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Sentiment Analysis

21 / 46



Sentiment Analysis
A more nuanced and productive way of analyzing text data is called opinion mining or
sentiment analysis

We want to infer whether a section of text is positive or negative, or perhaps
characterized by some other more nuanced emotion like surprise or disgust.

The basics are really simple: we map a word to a number, e.g.:

Positive number: positive sentiment
Negative number: negative sentiment

Some important obvious drawbacks:

Not every word is in the lexicon because many words are pretty neutral.
The methods do not take into account qualifiers before a word, such as in “no
good” or “not true”
Doesn't understand sarcasm or negated text
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Sentiment Analysis
The tidytext  package contains three automatic sentiment maps:

The bing  lexicon categorizes words in a binary fashion into positive and negative
categories.

The nrc  lexicon categorizes words in a binary fashion (“yes”/“no”) into categories
of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and
trust.

The AFINN  lexicon assigns words with a score that runs between -5 and 5, with
negative scores indicating negative sentiment and positive scores indicating
positive sentiment.
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Example: Wikipedia Data
Let's try to find out the sentiment according to the bing  lexicon of each paragraph on
the 2022 World Cup page:

bing <- get_sentiments("bing")
# Merge sentiment with your data with inner_join
sect_sent <- data |> 
  inner_join(bing) |>
  count(section, sentiment) |>
  pivot_wider(names_from = sentiment, values_from = n, values_fill = 0)

sect_sent |> head(5)

## # A tibble: 5 × 3
##   section positive negative
##     <int>    <int>    <int>
## 1       3        1        0
## 2       4        1        0
## 3       5       14        1
## 4       6        2        6
## 5       7        1        1
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Example: Wikipedia Data
Let's now calculate a sentiment score

Merge it to the most occurring words in the section

Get a rough idea what the section is about and what the sentiment is:

# Most occurring words
mow <- data |> 
  group_by(section) |>
  count(word) |>
  slice_max(order_by = word, n = 10) |>
  select(-n) |>
  nest(data = word)

# Calculate a net sentiment score
sect_sent <- sect_sent |> 
  mutate(score = positive / (positive + negative)) |>
  filter(positive + negative > 8)

25 / 46



Wikipedia Example
We merge the two data frames and plot the section keywords against the sentiment:

score_df <- sect_sent |> 
  left_join(mow) 

score_df |>
  ggplot(aes(x = score, y = as.factor(section))) + geom_col()
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Wikipedia Example
Let us finally plot the score and the most important keywords, so as to get a sense
which sections are very negative, and which are positive:

score_df|> 
  unnest() |> 
  group_by(section) |>
  summarize(score = mean(score), text = stringr::str_c(word, collapse=", ")) |>
  arrange(score) |>
  head(8)

## # A tibble: 8 × 3
##   section score text                                                                
##     <int> <dbl> <chr>                                                               
## 1      15 0.111 zürich, world, votes, vote, united, uefa, tournaments, switzerland, 
## 2      89 0.133 world, won, violation, senior, selection, representations, report, r
## 3      88 0.182 world, workers, women, wider, tv, treatment, ten, study, strong, sta
## 4     106 0.25  wrongdoing, vote, visa, vice, times, support, sunday, stated, sponso
## 5     123 0.3   water, waits, village, transportation, tourists, tents, tent, tap, s
## 6     109 0.333 summary, submitted, stating, significant, russia, reviewed, represen
## 7      92 0.364 world, workers, water, wage, violation, violated, treatment, time, s
## 8      94 0.444 zones, zone, world, wide, western, supreme, stated, social, sobering
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Frequency Analysis
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Frequency Analysis
You might have realized that a lot of sections contain words like world, cup , etc.

You could look at the term frequency defined as the amount of times a word
occurs / total amount of words in a document

Ideally, you would also want to focus on the uniqueness of each word

Another approach is to look at a term’s inverse document frequency (idf)

This decreases the weight for commonly used words and increases the weight for
words that are not used very much in a collection of documents.

idf(term) = log[ ]
Ndocuments

Ndocuments containing term
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Tf-Idf
If you multiply the term frequency (the count of the word in a document) by its
inverse document frequency, you get a statistic called the tf-idf

The statistic tf-idf  is intended to measure how important a word is to a document in
a collection (a corpus) of documents

For example, to one novel in a collection of novels or to one website in a collection of
websites.

The higher the tf-idf , the more relevance a word has.

where  represents term frequency or the number of occurrences of term  in
document , and the inverse document frequency of word  defined as before.

tf-idf(w, d) = tf(w, d) × idf(w)

tf(w, d) w

d w
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Tf-Idf
The function bind_tf_idf  calculates the tf_idf  ratio for you:
The syntax is bind_tf_idf(frequency_df, term_var, section_var, count_var)

# Start with the World Cup data, calculate tf_idf on the basic of frequency count
tf_idf <- data |>
  group_by(section) |>
  count(word) |>
  bind_tf_idf(word, section, n)

tf_idf |> head(5)

## # A tibble: 5 × 6
## # Groups:   section [1]
##   section word             n     tf   idf tf_idf
##     <int> <chr>        <int>  <dbl> <dbl>  <dbl>
## 1       3 22nd             1 0.0294  4.78 0.141 
## 2       3 arab             1 0.0294  3.17 0.0932
## 3       3 asia             1 0.0294  4.78 0.141 
## 4       3 awarded          1 0.0294  2.99 0.0879
## 5       3 championship     1 0.0294  4.09 0.120
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Tf-Idf
Let's see if we can get a more accurate description of the sections if we use the tf-itf
rather than the 10 most occurring words in each paragraph:

Potentially, you could now do sentiment analysis while weighting the words by their
tf_idf

Alternatively, you could filter the data frame conditional on a particular tf_df
threshold
This serves as a filter for words that distinguish sections/chapters/books from all
others in your corpus
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Tf-Idf
Here, we display the 10 highest tf-idf words per section:

tf_idf |>
  slice_max(order_by = tf_idf, n = 10) |>
  select(section, word) |>
  summarize(text = stringr::str_c(word, collapse=", ")) |>
  head(5)

## # A tibble: 5 × 2
##   section text                                                                      
##     <int> <chr>                                                                     
## 1       3 held, 22nd, asia, championship, muslim, organized, world, arab, korea, sou
## 2       4 held, teams, cities, extremes, host's, hot, event, alongside, days, determ
## 3       5 player, golden, title, tournament's, winning, awarded, nation, final, goal
## 4       6 attracted, choice, community, scheduling, significant, wider, lack, strong
## 5       7 held, contested, round, teams, distancing, length, masks, negative, profes
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N-grams and Topic Modeling
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N-grams and Topic Modeling
So far we’ve considered words as individual units, and considered their relationships to
sentiments or to documents.

Many interesting text analyses are based on the relationships between words,
examining which words tend to follow others immediately, or that tend to co-occur
within the same document

An -gram is a token consisting of  consecutive words:

We can do this by adding the token = "ngrams"  option to unnest_tokens() , and
set the parameter  to the number of consecutive words we pick as our tokens

N n

n
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N-grams and Topic Modeling
We proceed again from the World Cup Dataset, but now tokenize it in terms of
bigrams:

bigram <- tibble(section = seq(wc2022), text = wc2022) |>
  unnest_tokens(bigram, text, token = "ngrams", n = 2) |>
  filter(!is.na(bigram)) 

bigram |> head(5)

## # A tibble: 5 × 2
##   section bigram    
##     <int> <chr>     
## 1       3 the 2022  
## 2       3 2022 fifa 
## 3       3 fifa world
## 4       3 world cup 
## 5       3 cup was
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Using Bigrams For Context
You can analyze bigrams in the same way as you can analyze -grams

For example, you can use it to find which words are preceded by "not"

Potentially merge this (remember left_join , inner_join , etc.) to create new
sentiment scores based on the relative presence of "not" before a word

bigram |>
  separate(bigram, c('word1','word2'), sep = " ") |>
  filter(word1 == "not") |> 
  count(word1, word2, sort=TRUE) |> 
  head(5)

## # A tibble: 5 × 3
##   word1 word2       n
##   <chr> <chr>   <int>
## 1 not   be          2
## 2 not   enough      2
## 3 not   provide     2
## 4 not   qualify     2
## 5 not   secure      2

1
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Topic Modeling
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Topic Modeling
We often have collections of documents, such as blog posts or news articles, that we’d
like to divide into natural groups so that we can understand them separately.

Topic modeling is a method for unsupervised classification of such documents

Latent Dirichlet allocation (LDA) is a particularly popular method for fitting a topic
model. It treats each document as a mixture of topics, and each topic as a mixture of
words.

This allows documents to “overlap” each other in terms of content, rather than being
separated into discrete groups, in a way that mirrors typical use of natural language.
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Latent Dirichlet Allocation
(From Silge & Robinson, 2022)

In R, we can do Latent Dirichlet Allocation using the package topicmodels

The input in LDA is a document-term data.frame

The way LDA works:

Every document is a mixture of topics. For example, in a two-topic model we could
say “Document 1 is 90% topic A and 10% topic B, while Document 2 is 30% topic A
and 70% topic B.”
Every topic is a mixture of words.

For example, we could imagine a two-topic model of American news, with one topic for
“politics” and one for “entertainment.”

The most common words in the politics topic might be “President”, “Congress”, and
“government”, while the entertainment topic may be made up of words such as
“movies”, “television”, and “actor”.
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Latent Dirichlet Allocation
Mathematically, LDA outputs two objects,  and 

 is a map assigning a probability of  documents to  topics

 is a map assigning a probability of  words to  topics

We can use the cast_dtm()  function to convert this into a document-term matrix

The syntax is: cast_dtm(frequency_df, section_var, word_var,count_var)

Γ β

Γ D K

β V K
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Example: LDA on our Wikipedia page
Reminder: our tokenized Wikipedia data looked like this:

data |> head(5)

## # A tibble: 5 × 2
##   section word 
##     <int> <chr>
## 1       3 fifa 
## 2       3 world
## 3       3 cup  
## 4       3 22nd 
## 5       3 fifa

The data can be converted to a document term matrix using cast_dtm() :

dtm <- data |> count(section, word) |> tidytext::cast_dtm(section, word, n)

And then we can use LDA  from the topicmodels  package to run LDA:

library(topicmodels)
lda <- LDA(dtm, k = 2, control = list(seed = 1234))
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Results
Each word gets a -coefficient for each topic, interpretable as the probability of each
word belonging to a topic..

result_beta <- tidy(lda, matrix = "beta") 
result_beta |> slice(29:40)

## # A tibble: 12 × 3
##    topic term          beta
##    <int> <chr>        <dbl>
##  1     1 muslim    1.14e-51
##  2     2 muslim    7.30e- 4
##  3     1 national  4.88e- 4
##  4     2 national  3.93e- 3
##  5     1 november  3.17e- 3
##  6     2 november  4.78e- 3
##  7     1 organized 2.33e-51
##  8     2 organized 7.30e- 4
##  9     1 qatar     7.44e- 3
## 10     2 qatar     2.28e- 2
## 11     1 rights    2.05e- 3
## 12     2 rights    3.96e- 3

β
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We can use some data wrangling and
slice_max  to see which words belong
to which topic:

For example, by looking at the
ratio of probabilities
This tells us which words are most
discriminating

For topic 2, the most discriminating
words are:

result_beta |>
  pivot_wider(names_from = topic, valu
  filter(topic1 > .001 | topic2 > .001
  mutate(log_ratio = log2(topic2 / top
  slice_max(log_ratio, n=8)

## # A tibble: 8 × 4
##   term         topic1  topic2 log_ratio
##   <chr>         <dbl>   <dbl>     <dbl>
## 1 sale       3.61e-57 0.00109      178.
## 2 reportedly 6.66e-57 0.00109      177.
## 3 public     1.28e-56 0.00146      176.
## 4 gakpo      1.54e-56 0.00109      176.
## 5 rainbow    3.10e-56 0.00146      175.
## 6 wada       2.53e-56 0.00109      175.
## 7 flags      5.30e-56 0.00182      175.
## 8 banned     3.44e-56 0.00109      174.

Results
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Results
For topic 1:

result_beta |>
  pivot_wider(names_from = topic, values_from = beta, names_prefix = "topic") |> 
  filter(topic1 > .001 | topic2 > .001) |>
  mutate(log_ratio = log2(topic2 / topic1)) |>
  slice_min(log_ratio, n=10)

## # A tibble: 10 × 4
##    term       topic1   topic2 log_ratio
##    <chr>       <dbl>    <dbl>     <dbl>
##  1 morata    0.00120 4.85e-64     -201.
##  2 costa     0.00240 5.24e-62     -195.
##  3 rica      0.00200 2.82e-60     -189.
##  4 spain     0.00320 8.66e-60     -188.
##  5 germany   0.00400 1.13e-59     -188.
##  6 shootout  0.00120 1.83e-58     -182.
##  7 shot      0.00240 8.00e-58     -181.
##  8 kane      0.00120 9.64e-58     -180.
##  9 equalised 0.00160 4.12e-57     -178.
## 10 music     0.00200 5.49e-57     -178.
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Recapitulation
We had a first look at text mining

We started out by talking about different formats in which text can be organized
Subsequently, we performed sentiment analysis based on some common
sentiment indices

Then, we switched to frequency analysis and introduced the tf-idf  metric as a
measure of the relevance of a word/token

We expanded our understanding of tokens to -grams

Finally, we looked at an example of topic modeling using Latent Dirichlet Analysis

n
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